When nanostructured powder particles are used for thermal spray coatings, the retention of the original nanostructure that is engineered into the raw stock is a principal objective, along with production of some molten material in order to adhere the sprayed material to the surface being coated. Therefore, in contrast with spraying conventional powders, complete melting of the nanostructured raw stock is to be avoided. In this study, the melting and resolidification of sprayed material is correlated to a spray processing parameter that has been introduced in the literature by some of the spray processing practitioners. Using computer modeling, processing of zirconia agglomerates with plasma spraying has been simulated. Transition regions for the phase change response of the sprayed material to the thermal processing conditions are identified. The retained nanostructure content and liquid fraction of the sprayed material are correlated to particle diameters, injection velocities, as well as this thermal spray processing parameter. Finally, a novel method to produce desired coatings composed of partially molten material using a bimodal particle size distribution of the sprayed powder is suggested.

1.
Pawlowski
,
L.
, 1995,
The Science and Engineering of Thermal Spray Coatings
,
Wiley
, New York.
2.
Heimann
,
R. B.
, 1996,
Plasma-Spray Coating: Principles and Applications
,
Wiley
, New York.
3.
Shaw
,
L. L.
,
Goberman
,
D.
,
Ren
,
R.
,
Gell
,
M.
,
Jiang
,
S.
,
Wang
,
Y.
,
Xiao
,
T. D.
, and
Strutt
,
P. R.
, 2000, “
The Dependency of Microstructure and Properties of Nanostructured Coatings on Plasma Spray Conditions
,”
Surf. Coat. Technol.
0257-8972,
130
(
1
), pp.
1
8
.
4.
Jordan
,
E. H.
,
Gell
,
M.
,
Sohn
,
Y. H.
,
Goberman
,
D.
,
Shaw
,
L.
,
Jiang
,
S.
,
Wang
,
M.
,
Xiao
,
T. D.
,
Wang
,
Y.
, and
Strutt
,
P.
, 2001, “
Fabrication and Evaluation of Plasma Sprayed Nanostructured Alumina-Titania Coatings With Superior Properties
,”
Mater. Sci. Eng., A
0921-5093,
301
(
1
), pp.
80
89
.
5.
Fauchais
,
P.
,
Vardelle
,
A.
, and
Dussoubs
,
B.
, 2001, “
Quo Vadis Thermal Spraying?
J. Therm. Spray Technol.
1059-9630,
10
(
1
), pp.
44
66
.
6.
Semenov
,
S.
, and
Cetegen
,
B.
, 2001, “
Spectroscopic Temperature Measurements in Direct Current Arc Plasma Jets Used in Thermal Spray Processing of Materials
,”
J. Therm. Spray Technol.
1059-9630,
10
(
2
), pp.
326
336
.
7.
Gell
,
M.
,
Jordan
,
E. H.
,
Sohn
,
Y. H.
,
Goberman
,
D.
,
Shaw
,
L.
, and
Xiao
,
T. D.
, 2001, “
Development and Implementation of Plasma Sprayed Nanostructured Ceramic Coatings
,”
Surf. Coat. Technol.
0257-8972,
146–147
, pp.
48
54
.
8.
Wan
,
Y.-P.
,
Prasad
,
V.
,
Wang
,
G.-X.
,
Sampath
,
S.
, and
Fincke
,
J.
, 1999, “
Modeling of a Powder Particle Heating, Melting, Resolidification, and Evaporation in Plasma Spraying Processes
,”
ASME J. Heat Transfer
0022-1481,
121
, pp.
691
699
.
9.
Ahmed
,
I.
, and
Bergman
,
T. L.
, 2001, “
Simulation of Thermal Plasma Spraying of Partially Molten Ceramics: Effect of Carrier Gas on Particle Deposition and Phase Change Phenomena
,”
ASME J. Heat Transfer
0022-1481,
123
(
1
), pp.
188
196
.
10.
Ramesh
,
K.
,
Ng
,
H. W.
, and
Yu
,
S. C. M.
, 2003, “
Influence of Process Parameters on the Deposition Footprint in Plasma-spray Coating
,”
J. Therm. Spray Technol.
1059-9630,
12
(
3
), pp.
377
392
.
11.
Ramesh
,
K.
,
Yu
,
S. C. M.
,
Ng
,
H. W.
, and
Berndt
,
C. C.
, 2003, “
Computational Study and Experimental Comparison of the In-Flight Particle Behavior for an External Injection Plasma Spray Process
,”
J. Therm. Spray Technol.
1059-9630,
12
(
4
), pp.
508
522
.
12.
Dussoubs
,
B.
,
Vardelle
,
A.
,
Mariaux
,
G.
,
Themelis
,
N. J.
, and
Fauchais
,
P.
, 2001, “
Modeling of Plasma Spraying of Two Powders
,”
J. Therm. Spray Technol.
1059-9630,
10
(
1
), pp.
105
110
.
13.
Bandyopadhyay
,
R.
, and
Nylen
,
P.
, 2003, “
A Computational Fluid Dynamic Analysis of Gas and Particle Flow in Flame Spraying
,”
J. Therm. Spray Technol.
1059-9630,
12
(
4
), pp.
492
503
.
14.
Boulos
,
M.
,
Fauchais
,
P.
, and
Pfender
,
E.
, 1994,
Thermal Plasmas
, Vol.
1
,
Plenum Press
, New York.
15.
FLUENT 4.4 User’s Guide and Update Manual
, 1995-2002,
Fluent, Inc.
, 10 Cavendish Court, Lebanon, New Hampshire.
16.
Bird
,
R. B.
,
Stewart
,
E. W.
, and
Lightfoot
,
E. N.
,
Transport Phenomena
,
Wiley
, New York, 1960.
17.
Ahmed
,
I.
, and
Bergman
,
T. L.
, 2002, “
An Engineering Model for Solid-Liquid Phase Change Within Sprayed Ceramic Coatings of Non-Uniform Thickness
,”
Numer. Heat Transfer, Part A
1040-7782,
41
, pp.
113
129
.
18.
Crank
,
J.
, 1984,
Free and Moving Boundary Problems
,
Clarendon Press
, Oxford, UK.
19.
Ahmed
,
I.
, and
Bergman
,
T. L.
, 2000, “
Three-Dimensional Simulation of Thermal Plasma Spraying of Partially Molten Ceramic Agglomerates
,”
J. Therm. Spray Technol.
1059-9630,
9
(
2
), pp.
215
224
.
20.
Hasselman
,
D. P. H.
,
Johnson
,
L. F.
,
Bensten
,
L. D.
,
Syed
,
R.
,
Lee
,
H. L.
, and
Swain
,
M. V.
, 1987, “
Thermal Diffusivity and Conductivity of Dense Polycrystalline ZrO2 Ceramics: A Survey
,”
Am. Ceram. Soc. Bull.
0002-7812,
66
, pp.
799
806
.
21.
Ganz
,
B.
,
Koch
,
R.
,
Krebs
,
W.
, and
Wittig
,
S.
, 1998, “
Spectral Emissivity Measurements of Thermal Barrier Coatings
,”
Proceedings of the 7th AIAA/ASME Joint Thermophysics and Heat Transfer Conference
, Part 1 (of 4),
Armaly
,
B. F.
,
Howell
,
J. R.
,
Kaminski
,
D. A.
,
Phinney
,
L.
,
Thynell
,
S. T.
,
Chan
,
S. H.
,
Yang
,
J. C.
,
Gore
,
J.
,
Ezekoye
,
D.
,
Gill
,
W.
, and
Zhou
,
C. Q.
, eds.,
ASME
, New York,
HTD 357-1
, pp.
291
296
.
22.
Williamson
,
R. L.
,
Fincke
,
J. R.
, and
Chang
,
C. H.
, 2002, “
Numerical Study of the Relative Importance of Turbulence, Particle Size and Density, and Injection Parameters on Particle Behavior during Thermal Plasma Spraying
,”
J. Therm. Spray Technol.
1059-9630,
11
, pp.
107
108
.
23.
Erickson
,
L. C.
,
Troczynski
,
T.
,
Hawthorne
,
H. M.
,
Tai
,
H.
, and
Ross
,
D.
, 1999, “
Alumina Coatings by Plasma Spraying of Monosize Sapphire Particles
,”
J. Therm. Spray Technol.
1059-9630,
8
, pp.
421
426
.
You do not currently have access to this content.