Turbulence investigations of the flow past an unswept wing at a high angle of attack are reported. Detailed predictions were carried out using large-eddy simulations (LES) with very fine grids in the vicinity of the wall in order to resolve the near-wall structures. Since only a well-resolved LES ensures reliable results and hence allows a detailed analysis of turbulence, the Reynolds number investigated was restricted to Rec=105 based on the chord length c. Admittedly, under real flight conditions Rec is considerably higher (about (35-40)106). However, in combination with the inclination angle of attack α=18 deg this Rec value guarantees a practically relevant flow behavior, i.e., the flow exhibits a trailing-edge separation including some interesting flow phenomena such as a thin separation bubble, transition, separation of the turbulent boundary layer, and large-scale vortical structures in the wake. Due to the fine grid resolution applied, the aforementioned flow features are predicted in detail. Thus, reliable results are obtained which form the basis for advanced turbulence analysis. In order to provide a deeper insight into the nature of turbulence, the flow was analyzed using the invariant theory of turbulence by Lumley and Newman (J. Fluid Mech., 82, 161–178, 1977). Therefore, the anisotropy of various portions of the flow was extracted and displayed in the invariant map. This allowed us to examine the state of turbulence in distinct regions and provided an improved illustration of what happens in the turbulent flow. Thus, turbulence itself and the way in which it develops were extensively investigated, leading to an improved understanding of the physical mechanisms involved, not restricted to a standard test case such as channel flow but for a realistic, practically relevant flow problem at a moderate Reynolds number.

1.
Boiko
,
A. V.
,
Grek
,
G. R.
,
Dovgal
,
A. V.
, and
Kozlov
,
V. V.
, 2002,
The Origin of Turbulence in Near-Wall Flows
,
Springer
, Berlin, Heidelberg.
2.
Dovgal
,
A. V.
,
Kozlov
,
V. V.
, and
Michalke
,
A.
, 1994, “
Laminar Boundary Layer Separation: Instability and Associated Phenomena
,”
Prog. Aerosp. Sci.
0376-0421,
30
, pp.
61
94
.
3.
Meyer
,
D. G. W.
,
Rist
,
U.
, and
Wagner
,
S.
, 2003, “
Direct Numerical Simulation of the Development of Asymmetric Perturbations at Very Late Stages of the Transition Process
,” in
Recent Results in Laminar-Turbulent Transition, Notes on Numer. Fluid Mech. and Multidisc. Design
,
Springer
, New York, Vol.
86
, pp.
63
74
.
4.
Kloker
,
M.
, and
Stemmer
,
C.
, 2003, “
Three-dimensional Steady Disturbance Modes in the Blasius Boundary Layer – A DNS Study
,” in
Recent Results in Laminar-Turbulent Transition, Notes on Numer. Fluid Mech. and Multidisc. Design
,
Springer
, New York, Vol.
86
, pp.
91
110
.
5.
Lang
,
M.
,
Marxen
,
O.
,
Rist
,
U.
, and
Wagner
,
S.
, 2003, “
A Combined Numerical and Experimental Investigation of Transition in a Laminar Separation Bubble
,” in
Recent Results in Laminar-Turbulent Transition. Notes on Numer. Fluid Mech. and Multidisc. Design
,
Springer
, New York, Vol.
86
, pp.
149
164
.
6.
Ducros
,
F.
,
Comte
,
P.
, and
Lesieur
,
M.
, 1996, “
Large-Eddy Simulation of Transition to Turbulence in a Boundary Layer Developing Spatially Over a Flat Plate
,”
J. Fluid Mech.
0022-1120,
326
, pp.
1
36
.
7.
Huai
,
X.
,
Joslin
,
R. D.
, and
Piomelli
,
U.
, 1997, “
Large-Eddy Simulation of Transition to Turbulence in Boundary Layers
,”
Theor. Comput. Fluid Dyn.
0935-4964,
9
, pp.
149
163
.
8.
Lumley
,
J. L.
, and
Newman
,
G.
, 1977, “
The Return to Isotropy of Homogeneous Turbulence
,”
J. Fluid Mech.
0022-1120,
82
, pp.
161
178
.
9.
Lumley
,
J. L.
, 1978, “
Computational Modeling of Turbulent Flows
,”
Adv. Appl. Mech.
0065-2156,
18
, pp.
123
176
.
10.
Antonia
,
R. A.
,
Kim
,
J.
, and
Browne
,
L. W. B.
, 1991, “
Some Characteristics of Small-Scale Turbulence in a Turbulent Duct Flow
,”
J. Fluid Mech.
0022-1120,
233
, pp.
369
388
.
11.
Seidl
,
V.
, 1997, “
Entwicklung und Anwendung eines parallelen Finite-Volumen-Verfahrens zur Strömungssimulation auf unstrukturierten Gittern mit lokaler Verfeinerung
,” Dissertation, Institut für Schiffbau, Universität Hamburg, Bericht Nr. 585.
12.
Krogstad
,
P.
, and
Torbergsen
,
L. E.
, 2000, “
Invariant Analysis of Turbulent Pipe Flow
,”
Flow, Turbul. Combust.
1386-6184,
64
, pp.
161
181
.
13.
Fischer
,
M.
,
Jovanović
,
J.
, and
Durst
,
F.
, 2001, “
Reynolds Number Effects in the Near-Wall Region of Turbulent Channel Flows
,”
Phys. Fluids
1070-6631,
13
(
6
), pp.
1755
1767
.
14.
Schenck
,
T.
, and
Jovanović
,
J.
, 2002, “
Measurement of the Instantaneous Velocity Gradients in Plane and Axisymmetric Turbulent Wake Flows
,”
ASME J. Fluids Eng.
0098-2202,
124
, pp.
143
153
.
15.
Jovanović
,
J.
, and
Pashtrapanska
,
M.
, 2004, “
On the Criterion for the Determination Transition Onset and Breakdown to Turbulence in Wall-Bounded Flows
,”
ASME J. Fluids Eng.
0098-2202,
126
, pp.
626
633
.
16.
Jovanović
,
J.
, 2004,
Statistical Dynamics of Turbulence
,
Springer
, Berlin, Heidelberg.
17.
Lerche
,
Th.
, and
Dallmann
,
U. Ch.
, 1999, “
Das Prinzipexperiment COSTWING I: Dokument. der Aufbauphase
,” Institut für Strömungsmechanik, DLR Göttingen, IB 223–99 A04.
18.
Breuer
,
M.
, and
Jovičić
,
N.
, 2001, “
Separated Flow Around a Flat Plate at High Incidence: An LES Investigation
,”
J. Turbul.
1468-5248,
2
, pp.
1
15
.
19.
Breuer
,
M.
, 1998, “
Large-Eddy Simulation of the Sub-Critical Flow Past a Circular Cylinder: Numerical and Modeling Aspects
,”
Int. J. Numer. Methods Fluids
0271-2091,
28
, pp.
1281
1302
.
20.
Breuer
,
M.
, 2002, “
Direkte Numerische Simulation und Large-Eddy Simulation turbulenter Strömungen auf Hochleistungsrechnern
,” Habilitationsschrift, Univ. Erlangen-Nürnberg, Berichte a. d. Strömungstech., ISBN 3-8265-9958-6, Shaker.
21.
Breuer
,
M.
, and
Rodi
,
W.
, 1996, “
Large- Eddy Simulation of Complex Turbulent Flows of Practical Interest
,” in
Flow Simulation with High-Performance Computers II, Notes on Numer. Fluid Mech.
,
Vieweg
, Braunschweig, Vol.
52
, pp.
258
274
.
22.
Ferziger
,
J. H.
, and
Perić
,
M.
, 1999,
Computational Methods for Fluid Dynamics
,
Springer
, New York.
23.
Germano
,
M.
,
Piomelli
,
U.
,
Moin
,
P.
, and
Cabot
,
W. H.
, 1991, “
A Dynamic Subgrid Scale Eddy Viscosity Model
,”
Phys. Fluids A
0899-8213,
3
(
7
), pp.
1760
1765
.
24.
Lilly
,
D. K.
, 1992, “
A Proposed Modification of the Germano Subgrid Scale Closure Method
,”
Phys. Fluids A
0899-8213,
4
(
3
), pp.
633
635
.
25.
Smagorinsky
,
J.
, 1963, “
General Circulation Experiments with the Primitive Equations, I, The Basic Experiment
,”
Mon. Weather Rev.
0027-0644,
91
, pp.
99
165
.
26.
Jovičić
,
N.
,
Evans
,
G.
,
Breuer
,
M.
, and
Friedrich
,
R.
, 2003, “
Comparison of Two Large-Eddy Simulations for a Stalled Airfoil Flow Using Different Finite-Volume Formulations
,”
Notes on Numer. Fluid Mech. and Multidisc. Design
,
86
, pp.
293
306
.
27.
Breuer
,
M.
, 2000, “
A Challenging Test Case for Large Eddy Simulation: High Reynolds Number Circular Cylinder Flow
,”
Int. J. Heat Fluid Flow
0142-727X,
21
(
5
), pp.
648
654
, Elsevier Science B. V., Amsterdam.
28.
Dahlström
,
S.
, and
Davidson
,
L.
, 2003, “
Large Eddy Simulation Applied to a High-Reynolds Flow Around an Airfoil Close to Stall
,” AIAA Paper No. 2003–0776, Reno, NV.
29.
Kindler
,
K.
,
Kreplin
,
H.-P.
, and
Ronneberger
,
D.
, 2003, “
Experimentelle Untersuchung kohärenter Strukturen in kritischen Tragflügelströmungen
,” Interner Bericht, IB 224 - 2003 A 11, Inst. f. Aerodynamik und Strömungstechnik, DLR Göttingen.
30.
Jovičić
,
N.
, and
Breuer
,
M.
, 2004, “
Separated Flow Past an Airfoil at High Angle of Attack: LES Predictions and Analysis
,”
Proceedings of the Fifth Int. ERCOFTAC Workshop on DNS and LES: DLES-5
, Munich University of Technology, Germany, Aug. 27–29, 2003, ERCOFTAC Series,
9
, pp.
611
618
, Direct and Large–Eddy Simulation V,
R.
Friedrich
,
B. J.
Geurts
, and
O.
Métais
, eds.
Kluwer Academic Publishers
, Dordrecht.
You do not currently have access to this content.