A low-Reynolds number extension of the explicit algebraic stress model, developed by Gatski and Speziale (GS) is proposed. The turbulence anisotropy Πb and production to dissipation ratio Pϵ are modeled that recover the established equilibrium values for the homogeneous shear flows. The devised (Πb, Pϵ) combined with the model coefficients prevent the occurrence of nonphysical turbulence intensities in the context of a mild departure from equilibrium, and facilitate an avoidance of numerical instabilities, involved in the original GS model. A new near-wall damping function fμ in the eddy viscosity relation is introduced. To enhance dissipation in near-wall regions, the model constants Cϵ(1,2) are modified and an extra positive source term is included in the dissipation equation. A realizable time scale is incorporated to remove the wall singularity. The turbulent Prandtl numbers σ(k,ϵ) are modeled to provide substantial turbulent diffusion in near-wall regions. The model is validated against a few flow cases, yielding predictions in good agreement with the direct numerical simulation and experimental data.

1.
Rodi
,
W.
, 1976, “
A New Algebraic Relation for Calculating the Reynolds Stresses
,”
Z. Angew. Math. Mech.
0044-2267,
56
, pp.
T219
221
.
2.
Pope
,
S. B.
, 1975, “
A More General Effective Viscosity Hypothesis
,”
J. Fluid Mech.
0022-1120,
72
, pp.
331
340
.
3.
Launder
,
B. E.
,
Reece
,
G.
, and
Rodi
,
W.
, 1975, “
Progress in the Development of a Reynolds Stress Closure
,”
J. Fluid Mech.
0022-1120,
68
, pp.
537
566
.
4.
Gatski
,
T. B.
, and
Speziale
,
C. G.
, 1993, “
On the Explicit Algebraic Stress Models for Complex Turbulent Models
,”
J. Fluid Mech.
0022-1120,
254
, pp.
59
78
.
5.
Lumley
,
J. L.
, 1978, “
Computational Modeling of Turbulent Flows
,”
Adv. Appl. Mech.
0065-2156,
18
, pp.
124
176
.
6.
Abid
,
R.
,
Rumsey
,
C.
, and
Gatski
,
T. B.
, 1995, “
Prediction of Nonequilibrium Turbulent Flows With Explicit Algebraic Stress Models
,”
AIAA J.
0001-1452,
33
, pp.
2026
2031
.
7.
Girimaji
,
S. S.
, 1996, “
Fully Explicit and Self-Consistent Algebraic Reynolds Stress Model
,”
Theor. Comput. Fluid Dyn.
0935-4964,
8
, pp.
387
402
.
8.
Jongen
,
T.
, and
Gatski
,
T. B.
, 1998, “
A New Approach to Characterizing the Equilibrium States of the Reynolds Stress Anisotropy in Homogeneous Turbulence
,”
Theor. Comput. Fluid Dyn.
0935-4964,
11
, pp.
31
47
.
9.
Abid
,
R.
,
Morrison
,
J. H.
,
Gatski
,
T. B.
, and
Speziale
,
C. G.
, 1997, “
Prediction of Aerodynamic Flows With a New Explicit Algebraic Stress Model
,”
J. Symb. Comput.
0747-7171,
34
, pp.
2632
2635
.
10.
Rumsey
,
C. L.
,
Gatski
,
T. B.
, and
Morrison
,
J. H.
, 2000, “
Turbulence Model Predictions of Strongly Curved Flow in U-Duct
,”
AIAA J.
0001-1452,
38
, pp.
1394
1402
.
11.
Kim
,
J.
, 1990, personal communication.
12.
Tavoularis
,
S.
, and
Corrsin
,
A.
, 1981, “
Experiments in Nearly Homogeneous Turbulent Shear Flow With a Uniform Mean Temperature Gradient, Part I
,”
J. Fluid Mech.
0022-1120,
104
, pp.
311
347
.
13.
Abid
,
R.
, and
Speziale
,
C. G.
, 1993, “
Predicting Equilibrium States With Reynolds Stress Closures in Channel Flow and Homogeneous Shear Flow
,”
Phys. Fluids A
0899-8213,
5
, pp.
1776
1782
.
14.
Kim
,
J.
,
Moin
,
P.
, and
Moser
,
R.
, 1987, “
Turbulence Statistics in Fully Developed Channel Flow at Low Reynolds Number
,”
J. Fluid Mech.
0022-1120,
177
, pp.
133
166
.
15.
Lee
,
M. J.
,
Kim
,
J.
, and
Moin
,
P.
, 1990, “
Structure of Turbulence at High Shear Rate
,”
J. Fluid Mech.
0022-1120,
216
, pp.
561
583
.
16.
Rogers
,
M. M.
, and
Moin
,
P.
, 1987, “
The Structure of the Vorticity Field in Homogeneous Turbulent Flows
,”
J. Fluid Mech.
0022-1120,
176
, pp.
33
66
.
17.
Rung
,
T.
,
Thiele
,
F.
, and
Fu
,
S.
, 1999, “
On the Realizability of Nonlinear Stress-Strain Relationships for Reynolds Stress Closures
,”
IAEA Bull.
0020-6067,
60
, pp.
333
359
.
18.
Rahman
,
M. M.
,
Rautaheimo
,
P.
, and
Siikonen
,
T.
, 1997, “
Numerical Study of Turbulent Heat Transfer From a Confined Impinging Jet Using a Pseudo-Compressibility Method
,” 2nd Int. Sym. on Turbulence, Heat and Mass Transfer, edited by
K.
Hanjalic
and
T. W. J.
Peeters
, June 9-12,
Delft University Press
,
The Netherlands
, pp.
511
520
.
19.
Rahman
,
M. M.
, and
Siikonen
,
T.
, 2001, “
Modifications for an Explicit Algebraic Stress Model
,”
Int. J. Numer. Methods Fluids
0271-2091,
35
, pp.
221
245
.
20.
Patel
,
V. C.
,
Rodi
,
W.
, and
Scheuerer
,
G.
, 1985, “
Turbulence Models for Near-Wall and Low Reynolds Number Flow: A Review
,”
AIAA J.
0001-1452,
23
, pp.
1308
1319
.
21.
Mansour
,
N. N.
,
Kim
,
J.
, and
Moin
,
P.
, 1988, “
Reynolds-Stress and Dissipation-Rate Budgets in a Turbulent Channel Flow
,”
J. Fluid Mech.
0022-1120,
194
, pp.
15
44
.
22.
Menter
,
F. R.
, 1994, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
0001-1452,
32
, pp.
1598
1605
.
23.
Mansour
,
N. N.
,
Kim
,
J.
, and
Moin
,
P.
, 1989, “
Near-Wall k - ϵ Turbulence Modeling
,”
AIAA J.
0001-1452,
27
, pp.
1068
1073
.
24.
Durbin
,
P. A.
, and
Speziale
,
C. G.
, 1991, “
Local Anisotropy in Strained at High Reynolds Numbers
,”
J. Fluids Eng.
0098-2202,
113
, pp.
707
709
.
25.
Durbin
,
P. A.
, 1993, “
A Reynolds-Stress Model for Near-Wall Turbulence
,”
J. Fluid Mech.
0022-1120,
249
, pp.
465
498
.
26.
Ahn
,
J. W.
,
Park
,
T. S.
, and
Sung
,
H. J.
, 1997, “
Application of a Near-Wall Turbulence Model to the Flows Over a Step With Inclined Wall
,”
Int. J. Heat Fluid Flow
0142-727X,
18
, pp.
209
217
.
27.
Yoshizawa
,
A.
, 1987, “
Statistical Modeling of a Transport Equation for the Kinetic Energy Dissipation Rate
,”
Phys. Fluids
0031-9171,
30
, pp.
628
631
.
28.
Rahman
,
M. M.
, and
Siikonen
,
T.
, 2000, “
Improved Low-Reynolds-Number k - ϵ̃ Model
,”
AIAA J.
0001-1452,
38
, pp.
1298
1300
.
29.
Yap
,
C. R.
, 1987, “
Turbulent Heat and Momentum Transfer in Recirculating and Impinging Flows
,” Ph.D. thesis, Faculty of Technology, University of Manchester.
30.
Abe
,
K.
,
Kondoh
,
T.
, and
Nagano
,
Y.
, 1997, “
On Reynolds-Stress Expressions and Near-Wall Scaling Parameters for Predicting Wall and Homogeneous Turbulent Shear Flows
,”
Int. J. Heat Fluid Flow
0142-727X,
18
, pp.
266
282
.
31.
Rahman
,
M. M.
, and
Siikonen
,
T.
, 2001, “
An Artificial Compressibility Method for Incompressible Flows
,”
Numer. Heat Transfer, Part B
1040-7790,
40
, pp.
391
409
.
32.
Roe
,
P. L.
, 1981, “
Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes
,”
J. Comput. Phys.
0021-9991,
43
, pp.
357
372S
.
33.
Lombard
,
C.
,
Bardina
,
J.
,
Venkatapathy
,
E.
, and
Oliger
,
J.
, 1983, “
Multi-Dimensional Formulation of CSCM—An Upwind Flux Difference Eigenvector Split Method for the Compressible Navier-Stokes Equations
,” 6th AIAA Computational Fluid Dynamics Conference, AIAA Paper No. 83-1895-CP, pp.
649
664
.
34.
Jameson
,
A.
, and
Yoon
,
S.
, 1986, “
Multigrid Solution of the Euler Equations Using Implicit Schemes
,”
AIAA J.
0001-1452,
24
, pp.
1737
1743
.
35.
Siikonen
,
T.
, 1995, “
An Application of Roe’s Flux-Difference Splitting for k−ϵ Turbulence Model
,”
Int. J. Numer. Methods Fluids
0271-2091,
21
, pp.
1017
1039
.
36.
Chen
,
W. L.
,
Lien
,
F. S.
, and
Leschziner
,
M. A.
, 1998, “
Nonlinear Eddy Viscosity Modelling of Transitional Boundary Layers Pertinent to Turbomachine Aerodynamics
,”
Int. J. Heat Fluid Flow
0142-727X,
19
, pp.
297
306
.
37.
Savill
,
A. M.
, 1993, “
Some Recent Progress in the Turbulence Modeling of By-Pass Transition
,” in
Near-Wall Turbulent Flows
,
R. M. C.
So
,
C. G.
Speziale
, and
B. E.
Launder
, eds.,
Elsevier
, New York, pp.
829
848
.
38.
Parsheh
,
M.
, 2001, “
Flow in Contractions With Application to Headboxes
,” Ph.D. thesis, Royal Institute of Technology, Department of Mechanics, Faxenlaboratoriet, SE-100 44 Stockholm, Sweden.
39.
Buice
,
C.
, and
Eaton
,
J. K.
, 1997, “
Experimental Investigation of Flow Through an Asymmetric Plane Diffuser
,” Dept. of Mechanical Engineering, Thermoscience Div., Rept. TSD-107, Stanford University, CA.
40.
Monson
,
D. J.
,
Seegmiller
,
H. L.
,
McConnaughey
,
P. K.
, and
Chen
,
Y. S.
, 1990, “
Comparison of Experiment With Calculations Using Curvature-Corrected Zero and Two-Equation Turbulence Models for a Two-Dimensional U-Duct
,” AIAA Paper No. 90-1484.
41.
Monson
,
D. J.
, and
Seegmiller
,
H. L.
, 1992, “
An Experimental Investigation of Subsonic Flow in a Two-Dimensional U-Duct
,” NASA TM 103931.
42.
Luo
,
J.
, and
Lakshminarayana
,
B.
, 1997, “
Prediction of Strongly Curved Turbulent Duct Flows With Reynolds Stress Model
,”
AIAA J.
0001-1452,
35
, pp.
91
98
.
You do not currently have access to this content.