Laminar separation on the suction side of low-pressure turbine blades at low Reynolds number operating conditions deteriorates overall engine performance and has to be avoided. This requirement affects the blade design and poses a limitation on the maximum permissible blade spacing. Better understanding of the flow physics associated with laminar separation will aid in the development of flow control techniques for delaying or preventing flow separation. Simulations of low-pressure turbine flows are challenging as both unsteady separation and transition are present and interacting. Available simulation strategies have to be evaluated before a well-founded decision for the choice of a particular simulation strategy can be made. With this in mind, this paper provides a comparison of different flow simulation strategies: In particular, “coarse grid” direct numerical simulations, implicit large-eddy simulations, and simulations based on a hybrid turbulence modeling approach are evaluated with particular emphasis on investigating the dynamics of the coherent structures that are generated in the separated flow region and that appear to dominate the entire flow. It is shown that in some instances, the effect of the dominant coherent structures can also be predicted by unsteady Reynolds-averaged Navier–Stokes calculations.

1.
Morkovin
,
M.
, 1969, “
The Many Faces of Transition
,”
Viscous Drag Reduction
,
C. S.
Wells
, ed.,
Plenum
,
New York
.
2.
Bons
,
J.
,
Sondergaard
,
R.
, and
Rivir
,
R.
, 2001, “
Turbine Separation Control Using Pulsed Vortex Generator Jets
,”
ASME J. Turbomach.
0889-504X,
123
(
2
), pp.
198
206
.
3.
Bons
,
J.
,
Sondergaard
,
R.
, and
Rivir
,
R.
, 2002, “
The Fluid Dynamics of LPT Blade Separation Control Using Pulsed Jets
,”
ASME J. Turbomach.
0889-504X,
124
(
1
), pp.
77
85
.
4.
Sondergaard
,
R.
,
Bons
,
J.
, and
Rivir
,
R.
, 2002, “
Control of Low-Pressure Turbine Separation Using Vortex Generator Jets
,”
J. Propul. Power
0748-4658,
18
(
4
), pp.
889
895
.
5.
Hansen
,
L.
, and
Bons
,
J.
, 2006, “
Flow Measurements of Vortex Generator Jets in Separating Boundary Layer
,”
J. Propul. Power
0748-4658,
22
(
3
), pp.
558
566
.
6.
Huang
,
J.
,
Corke
,
T.
, and
Thomas
,
F.
, 2003, “
Plasma Actuators for Separation Control of Low Pressure Turbine Blades
,” AIAA Paper No. 2003–1027.
7.
Huang
,
J.
,
Corke
,
T.
, and
Thomas
,
F.
, 2006, “
Plasma Actuators for Separation Control of Low-Pressure Turbine Blades
,”
AIAA J.
0001-1452,
44
(
1
), pp.
51
57
.
8.
Huang
,
J.
,
Corke
,
T.
, and
Thomas
,
F.
, 2006, “
Unsteady Plasma Actuators for Separation Control of Low-Pressure Turbine Blades
,”
AIAA J.
0001-1452,
44
(
7
), pp.
1477
1487
.
9.
Corke
,
C.
, and
Post
,
M.
, 2005, “
Overview of Plasma Flow Control: Concepts, Optimization, and Applications
,” AIAA Paper No. 2005–0563.
10.
Roberts
,
S.
, and
Yaras
,
M.
, 2005, “
Boundary-Layer Transition Affected by Surface Roughness and Free-Stream Turbulence
,”
ASME J. Fluids Eng.
0098-2202,
127
(
5
), pp.
449
457
.
11.
Roberts
,
S.
, and
Yaras
,
M.
, 2006, “
Effects of Surface-Roughness Geometry on Separation-Bubble Transition
,”
ASME J. Turbomach.
0889-504X,
128
(
2
), pp.
349
356
.
12.
Lake
,
J.
,
King
,
P.
, and
Rivir
,
R.
, 1999, “
Reduction of Separation Losses on a Turbine Blade With Low Reynolds Number
,” AIAA Paper No. 99–0242.
13.
Sohn
,
K.-H.
,
Shyne
,
R.
, and
DeWitt
,
K.
, 1998, “
Experimental Investigation of Boundary Layer Behavior in a Simulated Low Pressure Turbine
,” NASA, Technical Memorandum No. 207921.
14.
Sohn
,
K.-H.
, and
DeWitt
,
K.
, 2007, “
Experimental Study of Transitional Flow Behavior in a Simulated Low Pressure Turbine
,” NASA, Technical Memorandum No. 214670.
15.
Volino
,
R.
, and
Hultgren
,
L.
, 2001, “
Measurements in Separated and Transitional Boundary Layers Under Low-Pressure Turbine Airfoil Conditions
,”
ASME J. Turbomach.
0889-504X,
123
(
2
), pp.
189
197
.
16.
Margolin
,
L.
, and
Rider
,
W.
, 2002, “
A Rationale for Implicit Turbulence Modeling
,”
Int. J. Numer. Methods Fluids
0271-2091,
39
(
9
), pp.
821
841
.
17.
Wu
,
X.
, and
Durbin
,
P.
, 2001, “
Evidence of Longitudinal Vortices Evolved From Distorted Wakes in a Turbine Passage
,”
J. Fluid Mech.
0022-1120,
446
, pp.
199
228
.
18.
Kalitzin
,
G.
,
Wu
,
X.
, and
Durbin
,
P.
, 2003, “
DNS of Fully Turbulent Flow in a LTP Passage
,”
Int. J. Heat Fluid Flow
0142-727X,
24
(
4
), pp.
636
644
.
19.
Wissink
,
J.
, and
Rodi
,
W.
, 2006, “
Direct Numerical Simulations of Transitional Flow in Turbomachinery
,”
ASME J. Turbomach.
0889-504X,
128
(
4
), pp.
668
678
.
20.
Wu
,
X.
,
Jacobs
,
R.
,
Hunt
,
J.
, and
Durbin
,
P.
, 1999, “
Simulation of Boundary Layer Transition Induced by Periodically Passing Wakes
,”
J. Fluid Mech.
0022-1120,
398
, pp.
109
153
.
21.
Postl
,
D.
,
Gross
,
A.
, and
Fasel
,
H.
, 2003, “
Numerical Investigation of Low-Pressure Turbine Blade Separation Control
,” AIAA Paper No. 2003–0614.
22.
Postl
,
D.
,
Gross
,
A.
, and
Fasel
,
H.
, 2004, “
Numerical Investigation of Active Flow Control for Low-Pressure Turbine Blade Separation
,” AIAA Paper No. 2004–0750.
23.
Raverdy
,
B.
,
Mary
,
I.
, and
Sagaut
,
P.
, 2003, “
High-Resolution Large-Eddy Simulation of Flow Around Low-Pressure Turbine Blade
,”
AIAA J.
0001-1452,
41
(
3
), pp.
390
397
.
24.
Michelassi
,
V.
,
Wissink
,
J.
,
Fröhlich
,
J.
, and
Rodi
,
W.
, 2003, “
Large-Eddy Simulation of Flow Around Low-Pressure Turbine Blade With Incoming Wakes
,”
AIAA J.
0001-1452,
41
(
11
), pp.
2143
2156
.
25.
Rizzetta
,
D.
, and
Visbal
,
M.
, 2003, “
Numerical Investigations of Transitional Flow Through a Low-Pressure Turbine Cascade
,” AIAA Paper No. 2003–3587.
26.
Rizzetta
,
D.
, and
Visbal
,
M.
, 2005, “
Numerical Simulation of Separation Control for Transitional Highly Loaded Low-Pressure Turbines
,”
AIAA J.
0001-1452,
43
(
9
), pp.
1958
1967
.
27.
Chernobrovkin
,
A.
, and
Lakshminarayana
,
B.
, 1999, “
Turbulence Modeling and Computation of Viscous Transitional Flows for Low Pressure Turbines
,”
ASME J. Fluids Eng.
0098-2202,
121
(
4
), pp.
824
833
.
28.
Garg
,
V.
, 2002, “
Low-Pressure Turbine Separation Control—Comparison With Experimental Data
,”
Proceedings of ASME Turbo Expo 2002
,
Amsterdam, The Netherlands
, June 3–6, pp.
621
627
.
29.
Dorney
,
D.
, 1996, “
Reynolds-Averaged Navier-Stokes Studies of Low Reynolds Number Effects on the Losses in a Low Pressure Turbine
,” NASA, Contractor Report No. 198534.
30.
Lardeau
,
S.
, and
Leschziner
,
M.
, 2004, “
Unsteady Reynolds-Averaged Navier-Stokes Computations of Transitional Wake/Blade Interaction
,”
AIAA J.
0001-1452,
42
(
8
), pp.
1559
1571
.
31.
Suzen
,
Y.
, and
Huang
,
P.
, 2000, “
Modeling of Flow Transition Using an Intermittency Transport Equation
,”
ASME J. Fluids Eng.
0098-2202,
122
(
2
), pp.
273
284
.
32.
Suzen
,
Y.
, and
Huang
,
P.
, 2005, “
Numerical Simulation of Unsteady Wake/Blade Interactions in Low-Pressure Turbine Flows Using an Intermittency Transport Equation
,”
ASME J. Turbomach.
0889-504X,
127
(
3
), pp.
431
444
.
33.
Suzen
,
Y.
,
Huang
,
P.
,
Ashpis
,
D.
,
Volino
,
R.
,
Corke
,
T.
,
Thomas
,
F.
,
Huang
,
J.
,
Lake
,
J.
, and
King
,
P.
, 2007, “
A Computational Fluid Dynamics Study of Transitional Flows in Low-Pressure Turbines Under a Wide Range of Operating Conditions
,”
ASME J. Turbomach.
0889-504X,
129
(
2
), pp.
527
541
.
34.
Menter
,
F.
,
Langtry
,
R.
,
Likki
,
S.
,
Suzen
,
Y.
, and
Huang
,
P.
, 2006, “
A Correlation-Based Transition Model Using Local Variables—Part I: Model Formulation
,”
ASME J. Turbomach.
0889-504X,
128
(
3
), pp.
413
422
.
35.
Fasel
,
H.
,
Seidel
,
J.
, and
Wernz
,
S.
, 2002, “
A Methodology for Simulations of Complex Turbulent Flows
,”
ASME J. Fluids Eng.
0098-2202,
124
(
4
), pp.
933
942
.
36.
Spalart
,
P.
,
Jou
,
W.-H.
,
Strelets
,
M.
, and
Allmaras
,
S.
, 1997, “
Comments on the Feasibility of LES for Wings, and on a Hybrid RANS/LES Approach
,”
Proceedings of the First AFOSR International Conference on DNS/LES
,
Ruston, LA
, Aug. 4–8,
Advances in DNS/LES
,
C.
Liu
and
Z.
Liu
, eds.,
Greyden Press
,
Columbus, OH
.
37.
Speziale
,
C.
, 1998, “
Turbulence Modeling for Time-Dependent RANS and VLES: A Review
,”
AIAA J.
0001-1452,
36
(
2
), pp.
173
184
.
38.
Wilcox
,
D.
, 2006,
Turbulence Modeling for CFD
, 3rd ed.,
DCW Industries
,
La Cañada, CA
.
39.
Rumsey
,
C.
, and
Gatski
,
T.
, 2001, “
Recent Turbulence Model Advances Applied to Multielement Airfoil Computations
,”
J. Aircr.
0021-8669,
38
(
5
), pp.
904
910
.
40.
Launder
,
B.
, and
Sharma
,
B.
, 1974, “
Application of the Energy Dissipation Model of Turbulence to the Calculation of Flow Near a Spinning Disc
,”
Lett. Heat Mass Transfer
0094-4548,
1
(
2
), pp.
131
138
.
41.
Lam
,
C.
, and
Bremhorst
,
K.
, 1981, “
Modified Form of k-ε Model for Predicting Wall Turbulence
,”
ASME J. Fluids Eng.
0098-2202,
103
(
3
), pp.
456
460
.
42.
Menter
,
F.
, 1994, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
0001-1452,
32
(
8
), pp.
1589
1605
.
43.
Spalart
,
P.
, and
Allmaras
,
S.
, 1992, “
A One-Equation Turbulence Model for Aerodynamic Flows
,” AIAA Paper No. 92–0439.
44.
Gross
,
A.
, and
Fasel
,
H.
, 2007, “
Characteristic Ghost-Cell Boundary Condition
,”
AIAA J.
0001-1452,
45
(
1
), pp.
302
306
.
45.
Gross
,
A.
, and
Fasel
,
H.
, 2002, “
High-Order WENO Schemes Based on the Roe Approximate Riemann Solver
,” AIAA Paper No. 2002–2735.
46.
Gross
,
A.
, and
Fasel
,
H.
, 2008, “
High-Order-Accurate Numerical Method for Complex Flows
,”
AIAA J.
0001-1452,
46
(
1
), pp.
204
214
.
47.
Yee
,
H.
, 1987, “
Upwind and Symmetric Shock-Capturing Schemes
,” NASA, Technical Memorandum No. 89464.
48.
Menter
,
F.
, 1992, “
Influence of Freestream Values on k-ω Turbulence Model Predictions
,”
AIAA J.
0001-1452,
30
(
6
), pp.
1657
1659
.
49.
Volino
,
R.
, 2002, “
Separated Flow Transition Under Simulated Low-Pressure Turbine Conditions—Part 1: Mean Flow and Turbulence Statistics
,”
ASME J. Turbomach.
0889-504X,
124
(
4
), pp.
645
655
.
50.
Simon
,
T.
,
Qiu
,
S.
, and
Yuan
,
K.
, 2000, “
Measurements in a Transitional Boundary Layer Under Low-Pressure Turbine Airfoil Conditions
,” NASA, Contractor Report No. 209957.
51.
Langtry
,
R.
,
Menter
,
F.
,
Likki
,
S.
,
Suzen
,
Y.
,
Huang
,
P.
, and
Völker
,
S.
, 2006, “
A Correlation-Based Transition Model Using Local Variables—Part II: Test Cases and Industrial Applications
,”
ASME J. Turbomach.
0889-504X,
128
(
3
), pp.
423
434
.
52.
Hunt
,
J.
,
Wray
,
A.
, and
Moin
,
P.
, 1988, “
Eddies, Stream, and Convergence Zones in Turbulent flows
,” Report No. CTR-S88.
53.
Gross
,
A.
, and
Fasel
,
H.
, 2005, “
Numerical Investigation of Low-Pressure Turbine Blade Separation Control
,”
AIAA J.
0001-1452,
43
(
12
), pp.
2514
2525
.
54.
Youngren
,
H.
, and
Drela
,
M.
, 1991, “
Viscous/Inviscid Method for Preliminary Design of Transonic Cascades
,” AIAA Paper No. 1991–2364.
55.
Praisner
,
T.
, and
Clark
,
J.
, 2007, “
Predicting Transition in Turbomachinery—Part I: A Review and New Model Development
,”
ASME J. Turbomach.
0889-504X,
129
(
1
), pp.
1
13
.
56.
Durbin
,
P.
, 1996, “
On the K-3 Stagnation Point Anomaly
,”
Int. J. Heat Fluid Flow
0142-727X,
17
(
1
), pp.
89
90
.
57.
Ho
,
C.-M.
, and
Huerre
,
P.
, 1984, “
Perturbed Free Shear Layers
,”
Annu. Rev. Fluid Mech.
0066-4189,
16
, pp.
365
424
.
58.
Theolis
,
V.
, and
Sherwin
,
S.
, 2004, “
Instability and Control of Low-Pressure Turbine Flows
,”
Proceedings of the 2003 Minnowbrook IV Workshop on Transition and Unsteady Aspects of Turbomachinery Flows
,
Blue Mountain Lake, NY
, Aug. 17–20,
J.
LaGraff
and
D.
Ashpis
, eds., pp.
31
32
, NASA Report No. TM-2004–212913.
59.
Davis
,
R.
,
Carter
,
J.
, and
Reshotko
,
E.
, 1987, “
Analysis of Transitional Separation Bubbles on Infinite Swept Wings
,”
AIAA J.
0001-1452,
25
(
3
), pp.
421
428
.
You do not currently have access to this content.