Large-eddy simulations (LESs) of flow past a circular cylinder in the vicinity of a flat plate have been carried out for three different gap-to-diameter (G/D) ratios of 0.25, 0.5, and 1.0 (where G signifies the gap between the flat plate and the cylinder, and D signifies the cylinder diameter) following the experiment of Price et al. (2002, “Flow Visualization Around a Circular Cylinder Near to a Plane Wall,” J. Fluids Struct., 16, pp. 175–191). The flow visualization along with turbulent statistics are presented for a Reynolds number of Re=1440 (based on D and the inlet free-stream velocity U). The three-dimensional time-dependent, incompressible Navier–Stokes equations are solved using a symmetry-preserving finite-difference scheme of second-order spatial and temporal accuracy. The immersed-boundary method is employed to impose the no-slip boundary condition at the cylinder surface. An attempt is made to understand the physics of flow involving interactions of shear layers shed from the cylinder and the wall boundary layer. Present LES reveals the shear layer instability and formation of small-scale eddies apart from their mutual interactions with the boundary layer. It has been observed that G/D ratio has a large influence on the modification of wake dynamics and evolution of the wall boundary layer. For a low gap ratio, it is difficult to identify the boundary layer because of its strong interactions with the shear layers; however, a rapid transition to turbulence of the boundary layer, which is similar to bypass transition, is observed for a large gap ratio.

1.
Price
,
S. J.
,
Sumner
,
D.
,
Smith
,
J. G.
,
Leong
,
K.
, and
Paidoussis
,
M. P.
, 2002, “
Flow Visualization Around a Circular Cylinder Near to a Plane Wall
,”
J. Fluids Struct.
0889-9746,
16
, pp.
175
191
.
2.
Norberg
,
C.
, 1994, “
An Experimental Investigation of the Flow Around a Circular Cylinder: Influence of Aspect Ratio
,”
J. Fluid Mech.
0022-1120,
258
, pp.
287
316
.
3.
Williamson
,
C. H. K.
, 1996, “
Vortex Dynamics in the Cylinder Wake
,”
Annu. Rev. Fluid Mech.
0066-4189,
28
, pp.
477
539
.
4.
Taneda
,
S.
, 1965, “
Experimental Investigation of Vortex Streets
,”
J. Phys. Soc. Jpn.
0031-9015,
20
, pp.
1714
1721
.
5.
Bearman
,
P. W.
, and
Zdravkovich
,
M. M.
, 1978, “
Flow Around a Circular Cylinder Near a Plane Boundary
,”
J. Fluid Mech.
0022-1120,
89
, pp.
33
47
.
6.
Grass
,
A. J.
,
Raven
,
P. W. J.
,
Stuart
,
R. J.
, and
Bray
,
J. A.
, 1984, “
The Influence of Boundary Layer Velocity Gradients and Bed Proximity on Vortex Shedding From Free Spanning Pipelines
,”
ASME J. Energy Resour. Technol.
0195-0738,
106
, pp.
70
78
.
7.
Taniguchi
,
S.
, and
Miyakoshi
,
K.
, 1990, “
Fluctuating Fluid Forces Acting on a Circular Cylinder and Interference With a Plane Wall
,”
Exp. Fluids
0723-4864,
9
, pp.
197
204
.
8.
Lei
,
C.
,
Cheng
,
L.
, and
Kavanagh
,
K.
, 1999, “
Re-Examination of the Effect of a Plane Boundary on Force and Vortex Shedding of a Circular Cylinder
,”
J. Wind. Eng. Ind. Aerodyn.
0167-6105,
80
, pp.
263
286
.
9.
Buresti
,
G.
, and
Lanciotti
,
A.
, 1979, “
Vortex Shedding From Smooth and Roughened Cylinders in Cross-Flow Near a Plane Surface
,”
Aeronaut. Q.
0001-9259,
30
, pp.
305
321
.
10.
Angrilli
,
F.
,
Bergamaschi
,
S.
, and
Cossalter
,
V.
, 1982, “
Investigation of Wall Induced Modifications to Vortex Shedding From a Circular Cylinder
,”
ASME J. Fluids Eng.
0098-2202,
104
, pp.
518
522
.
11.
Zdravkovich
,
M. M.
, 1985, “
Forces on a Circular Cylinder Near a Plane Wall
,”
Appl. Ocean Res.
,
7
, pp.
197
201
. 0141-1187
12.
Vada
,
T.
,
Nestegard
,
A.
, and
Skomedal
,
N.
, 1989, “
Simulation of Viscous Flow Around a Circular Cylinder in the Boundary Layer Near a Wall
,”
J. Fluids Struct.
0889-9746,
3
, pp.
579
594
.
13.
Liou
,
T. M.
,
Chen
,
S. H.
, and
Hwang
,
P. W.
, 2002, “
Large Eddy Simulation of Turbulent Wake Behind a Square Cylinder With a Nearby Wall
,”
ASME J. Fluids Eng.
0098-2202,
124
, pp.
81
90
.
14.
Dipankar
,
A.
, and
Sengupta
,
T. K.
, 2005, “
Flow Past a Circular Cylinder in the Vicinity of a Plane Wall
,”
J. Fluids Struct.
0889-9746,
20
, pp.
403
423
.
15.
Mittal
,
R.
, and
Balachandar
,
S.
, 1995, “
Effect of Three-Dimensionality on the Lift and Drag of Nominally Two-Dimensional Cylinders
,”
Phys. Fluids
1070-6631,
7
, pp.
1841
1865
.
16.
Germano
,
M.
,
Piomelli
,
U.
,
Moin
,
P.
, and
Cabot
,
W. H.
, 1991, “
A Dynamic Subgrid-Scale Eddy Viscosity Model
,”
Phys. Fluids A
0899-8213,
3
, pp.
1760
1765
.
17.
Lilly
,
D. K.
, 1992, “
A Proposed Modification of the Germano Subgrid-Scale Closure Method
,”
Phys. Fluids A
0899-8213,
4
, pp.
633
635
.
18.
Chorin
,
A. J.
, 1968, “
Numerical Solution of the Navier–Stokes Equations
,”
Math. Comput.
0025-5718,
22
, pp.
745
762
.
19.
Zhang
,
S. L.
, 1997, “
GPBi-CG: Generalized Product-Type Methods Based on Bi-CG for Solving Nonsymmetric Linear Systems
,”
SIAM J. Sci. Comput. (USA)
1064-8275,
18
, pp.
537
551
.
20.
Mittal
,
R.
, and
Moin
,
P.
, 1997, “
Suitability of Upwind-Biased Finite-Difference Schemes for Large-Eddy Simulation of Turbulent Flows
,”
AIAA J.
0001-1452,
35
, pp.
1415
1417
.
21.
Morinishi
,
Y.
,
Lund
,
T. S.
,
Vasilyev
,
O. V.
, and
Moin
,
P.
, 1998, “
Fully Conservative Higher Order Finite Difference Schemes for Incompressible Flow
,”
J. Comput. Phys.
0021-9991,
143
, pp.
90
124
.
22.
Beaudan
,
P.
, and
Moin
,
P.
, 1994, “
Numerical Experiments on the Flow Past a Circular Cylinder at Sub-Critical Reynolds Number
,” Department Mechanical Engineering, Stanford University, Report No. TF-62.
23.
Kravchenko
,
A. G.
, and
Moin
,
P.
, 2000, “
Numerical Studies of Flow Over a Circular Cylinder at ReD=3900
,”
Phys. Fluids
1070-6631,
12
, pp.
403
417
.
24.
Orlanski
,
I.
, 1976, “
Simple Boundary Condition for Unbounded Hyperbolic Flows
,”
J. Comput. Phys.
0021-9991,
21
, pp.
251
269
.
25.
Spalart
,
P. R.
, 1986, “
Numerical Study of Sink Flow Boundary Layers
,”
J. Fluid Mech.
0022-1120,
172
, pp.
307
328
.
26.
Fadlun
,
E. A.
,
Verzicco
,
R.
,
Orlandi
,
P.
, and
Mohd.-Yusof
,
J.
, 2000, “
Combined Immersed Boundary Finite Difference Methods for Three Dimensional Complex Flow Simulations
,”
J. Comput. Phys.
0021-9991,
161
, pp.
35
60
.
27.
Muldoon
,
F.
, and
Acharya
,
S.
, 2005, “
Mass Conservation in Immersed Boundary Method
,”
Proceedings of the FEDSM
, pp.
1
9
, Paper No. FEDSM-77301.
28.
Sarkar
,
S.
, 2008, “
Identification of Flow Structures on a LP Turbine Blade Due to Periodic Passing Wakes
,”
ASME J. Fluids Eng.
0098-2202,
130
, p.
061103
.
29.
Sarkar
,
S.
, 2007, “
The Effects of Passing Wakes on a Separating Boundary Layer Along a Low-Pressure Turbine Blade Through Large-Eddy Simulation
,”
Proc. Inst. Mech. Eng., Part A
0957-6509,
221
, pp.
551
564
.
30.
Sarkar
,
S.
, and
Voke
,
P. R.
, 2006, “
Large-Eddy Simulation of Unsteady Surface Pressure on a LP Turbine Blade Due to Interactions of Passing Wakes and Inflexional Boundary Layer
,”
ASME J. Turbomach.
0889-504X,
128
, pp.
221
231
.
31.
Sarkar
,
S.
, and
Sarkar
,
S.
, 2007, “
Large-Eddy Simulations of Cylinder Boundary Layer Interactions
,”
Proceedings of the ACFD7
, pp.
1349
1360
.
32.
Sarkar
,
S.
, and
Sarkar
,
S.
, 2007, “
Immersed Boundary Method for Simulating Complex Flows
,”
Proceedings of the ICFD‘07
, University of Reading, UK.
33.
Jacobs
,
R. G.
, and
Durbin
,
P. A.
, 2001, “
Simulations of Bypass Transition
,”
J. Fluid Mech.
0022-1120,
428
, pp.
185
212
.
34.
Ovchinnikov
,
V.
,
Piomelli
,
U.
, and
Choudhari
,
M. M.
, 2006, “
Numerical Simulations of Boundary-Layer Transition Induced by a Cylinder Wake
,”
J. Fluid Mech.
0022-1120,
547
, pp.
413
441
.
35.
Zhou
,
M. D.
, and
Squire
,
L. C.
, 1985, “
The Interaction of a Wake With a Turbulent Boundary-Layer
,”
J. Aeronaut. Sci.
0095-9812,
89
, pp.
72
81
.
36.
Zovatto
,
L.
, and
Pedrizzetti
,
G.
, 2001, “
Flow About a Circular Cylinder Between Parallel Walls
,”
J. Fluid Mech.
0022-1120,
440
, pp.
1
25
.
37.
Wu
,
X.
,
Jacobs
,
R. G.
,
Hunt
,
J. C. R.
, and
Durbin
,
P. A.
, 1999, “
Simulation of Boundary Layer Transition Induced by Periodically Passing Wakes
,”
J. Fluid Mech.
0022-1120,
398
, pp.
109
153
.
38.
Matsubara
,
M.
, and
Alfredsson
,
H.
, 2001, “
Disturbance Growth in Boundary Layers Subjected to Free-Stream Turbulence
,”
J. Fluid Mech.
0022-1120,
430
, pp.
149
168
.
39.
Spalart
,
P. R.
, 1988, “
Direct Simulation of Turbulent Boundary Layer Up to Rθ=1410
,”
J. Fluid Mech.
0022-1120,
187
, pp.
61
98
.
40.
Kim
,
H. T.
,
Kline
,
S. J.
, and
Reynolds
,
W. C.
, 1968, “
An Experimental Study of Turbulence Production Near a Smooth Wall in a Turbulent Boundary Layer With Zero Pressure Gradient
,” Stanford University, CA, Report No. MD-20.
You do not currently have access to this content.