Vortex rings are one of the fundamental flow structures in nature. In this paper, the generation of circulation and vortex rings by a vortex generator with a static converging conic nozzle exit is studied numerically. Conic nozzles can manipulate circulation and other flow invariants by accelerating the flow, increasing the Reynolds number, and by establishing a two-dimensional flow at the exit. The increase in the circulation efflux is accompanied by an increase in the vortex circulation. A novel normalization method is suggested to differentiate between two contributions to the circulation generation: a one-dimensional slug-type flow contribution and an inherently two-dimensional flow contribution. The one-dimensional contribution to the circulation increases with the square of the centerline exit velocity, while the two-dimensional contribution increases linearly with the decrease in the exit diameter. The two-dimensional flow contribution to the circulation production is not limited to the impulsive initiation of the flow only (as in straight tube vortex generators), but it persists during the entire ejection. The two-dimensional contribution can reach as much as 44% of the total circulation (in the case of an orifice). The present study offers evidences on the importance of the vortex generator geometry, and in particular, the exit configuration on the emerging flow, circulation generation, and vortex ring formation. It is shown that both total and vortex ring circulations can be controlled to some extent by the shape of the exit nozzle.

1.
Didden
,
N.
, 1979, “
Formation of Vortex Rings—Rolling-Up and Production of Circulation
,”
Z. Angew. Math. Phys.
0044-2275,
30
(
1
), pp.
101
116
.
2.
Glezer
,
A.
, 1988, “
The Formation of Vortex Rings
,”
Phys. Fluids
1070-6631,
31
(
12
), pp.
3532
3542
.
3.
Glezer
,
A.
, and
Coles
,
D.
, 1990, “
An Experimental-Study of a Turbulent Vortex Ring
,”
J. Fluid Mech.
0022-1120,
211
, pp.
243
283
.
4.
Shariff
,
K.
, and
Leonard
,
A.
, 1992, “
Vortex Rings
,”
Annu. Rev. Fluid Mech.
0066-4189,
24
, pp.
235
279
.
5.
Gharib
,
M.
,
Rambod
,
E.
, and
Shariff
,
K.
, 1998, “
A Universal Time Scale for Vortex Ring Formation
,”
J. Fluid Mech.
0022-1120,
360
, pp.
121
140
.
6.
Krueger
,
P. S.
, and
Gharib
,
M.
, 2003, “
The Significance of Vortex Ring Formation to the Impulse and Thrust of a Starting Jet
,”
Phys. Fluids
1070-6631,
15
(
5
), pp.
1271
1281
.
7.
Dabiri
,
J. O.
, and
Gharib
,
M.
, 2004, “
Fluid Entrainment by Isolated Vortex Rings
,”
J. Fluid Mech.
0022-1120,
511
, pp.
311
331
.
8.
Krueger
,
P. S.
,
Dabiri
,
J. O.
, and
Gharib
,
M.
, 2006, “
The Formation Number of Vortex Rings Formed in Uniform Background Co-Flow
,”
J. Fluid Mech.
0022-1120,
556
, pp.
147
166
.
9.
Pullin
,
D. I.
, 1979, “
Vortex Ring Formation at Tube and Orifice Openings
,”
Phys. Fluids
1070-6631,
22
(
3
), pp.
401
403
.
10.
Rosenfeld
,
M.
,
Rambod
,
E.
, and
Gharib
,
M.
, 1998, “
Circulation and Formation Number of Laminar Vortex Rings
,”
J. Fluid Mech.
0022-1120,
376
, pp.
297
318
.
11.
Mohseni
,
K.
, and
Gharib
,
M.
, 1998, “
A Model for Universal Time Scale of Vortex Ring Formation
,”
Phys. Fluids
1070-6631,
10
(
10
), pp.
2436
2438
.
12.
Zhao
,
W.
,
Frankel
,
S. H.
, and
Mongeau
,
L. G.
, 2000, “
Effects of Trailing Jet Instability on Vortex Ring Formation
,”
Phys. Fluids
1070-6631,
12
(
3
), pp.
589
596
.
13.
Mohseni
,
K.
,
Ran
,
H. Y.
, and
Colonius
,
T.
, 2001, “
Numerical Experiments on Vortex Ring Formation
,”
J. Fluid Mech.
0022-1120,
430
, pp.
267
282
.
14.
Linden
,
P. F.
, and
Turner
,
J. S.
, 2001, “
The Formation of “Optimal” Vortex Rings, and the Efficiency of Propulsion Devices
,”
J. Fluid Mech.
0022-1120,
427
, pp.
61
72
.
15.
Gharib
,
M.
,
Rambod
,
E.
,
Kheradvar
,
A.
,
Sahn
,
D. J.
, and
Dabiri
,
J. O.
, 2006, “
Optimal Vortex Formation as an Index of Cardiac Health
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
103
(
16
), pp.
6305
6308
.
16.
Dabiri
,
J. O.
,
Colin
,
S. P.
, and
Costello
,
J. H.
, 2006, “
Fast-Swimming Hydromedusae Exploit Velar Kinematics to Form an Optimal Vortex Wake
,”
J. Exp. Biol.
0022-0949,
209
(
11
), pp.
2025
2033
.
17.
Allen
,
J. J.
, and
Naitoh
,
T.
, 2005, “
Experimental Study of the Production of Vortex Rings Using a Variable Diameter Orifice
,”
Phys. Fluids
1070-6631,
17
, p.
061701
.
18.
Dabiri
,
J. O.
, and
Gharib
,
M.
, 2005, “
Starting Flow Through Nozzles With Temporally Variable Exit Diameter
,”
J. Fluid Mech.
0022-1120,
538
, pp.
111
136
.
19.
Krueger
,
P. S.
, 2005, “
An Over-Pressure Correction to the Slug Model for Vortex Ring Circulation
,”
J. Fluid Mech.
0022-1120,
545
, pp.
427
443
.
20.
Naitoh
,
T.
,
Fukuda
,
N.
,
Gotoh
,
T.
,
Yamada
,
H.
, and
Nakajima
,
K.
, 2002, “
Experimental Study of Axial Flow in a Vortex Ring
,”
Phys. Fluids
1070-6631,
14
(
1
), pp.
143
149
.
21.
Shusser
,
M.
,
Gharib
,
M.
,
Rosenfeld
,
M.
, and
Mohseni
,
K.
, 2002, “
On the Effect of Pipe Boundary Layer Growth on the Formation of a Laminar Vortex Ring Generated by a Piston/Cylinder Arrangement
,”
Theor. Comput. Fluid Dyn.
0935-4964,
15
(
5
), pp.
303
316
.
22.
Heeg
,
R. S.
, and
Riley
,
N.
, 1997, “
Simulations of the Formation of an Axisymmetric Vortex Ring
,”
J. Fluid Mech.
0022-1120,
339
, pp.
199
211
.
You do not currently have access to this content.