The two fluid model is used to simulate upward gas-liquid bubbly flow through a vertical conduit. Coalescence and breakup of bubbles have been accounted for by embedding the population balance technique in the two fluid model. The simulation enables one to track the axial development of the voidage pattern and the distribution of the bubbles. Thereby it has been possible to propose a new criterion for the transition from bubbly to slug flow regime. The transition criteria depend on (i) the breakage and coalescence frequency, (ii) the bubble volume count below and above the bubble size introduced at the inlet, and (iii) the bubble count histogram. The prediction based on the present criteria exhibits excellent agreement with the experimental data. It has also been possible to simulate the transition from bubbly to dispersed bubbly flow at a high liquid flow rate using the same model.

1.
Zuber
,
N.
, and
Findlay
,
J. A.
, 1965, “
Average Volumetric Concentration in Two Phase Flow Systems
,”
ASME J. Heat Transfer
0022-1481,
87
, pp.
453
468
.
2.
Ishii
,
M.
, and
Zuber
,
N.
, 1970, “
Thermally Induced Flow Instabilities in Two-Phase Mixtures
,”
Proceedings of the Fourth International Heat Transfer Conference
, Paris, France.
3.
Saha
,
P.
, and
Zuber
,
N.
, 1978, “
An Analytical Study of the Thermally Induced Two Phase Flow Instabilities Including the Effects of Thermal Non-Equilibrium
,”
Int. J. Heat Mass Transfer
0017-9310,
21
, pp.
415
426
.
4.
Kim
,
C.
, and
Roy
,
R. P.
, 1981, “
Two Phase Flow Dynamics by a Five Equation Drift Flux Model
,”
Lett. Heat Mass Transfer
0094-4548,
8
, pp.
57
68
.
5.
Hibiki
,
T.
, and
Ishii
,
M.
, 2000, “
Two-Group Interfacial Area Transport Equations at Bubbly-to-Slug Flow Transition
,”
Nucl. Eng. Des.
0029-5493,
202
, pp.
39
76
.
6.
Rakhmatulin
,
K. A.
, 1956, “
Fundamentals of Gas Dynamics of Interpenetrating Motions of Compressible Media
,”
Prikl. Mat. Mekh.
0032-8235,
20
(
2
), pp.
184
195
.
7.
Ishii
,
M.
, 1977, “
One Dimensional Drift Flux Model and Constitutive Equations for Relative Motion Between Phases in Various Two-Phase Flow Regimes
,” Argonne National Laboratory, Technical Report No. ANL-77-47.
8.
Wu
,
Q.
,
Ishii
,
M.
, and
Uhle
,
J.
, 1998, “
Frame Work of Two-Group Model for Interfacial Area Transport in Vertical Two-Phase Flows
,”
Trans. Am. Nucl. Soc.
0003-018X,
79
, pp.
351
352
.
9.
Fu
,
X. Y.
, and
Ishii
,
M.
, 2003, “
Two-Group Interfacial Area Transport in Vertical Air-Water Flow I. Mechanistic Model
,”
Nucl. Eng. Des.
0029-5493,
219
, pp.
143
168
.
10.
Kumar
,
S.
, and
Ramkrishna
,
D.
, 1996, “
On the Solution of Population Balance Equations by Discretization—I. A Fixed Pivot Technique
,”
Chem. Eng. Sci.
0009-2509,
51
(
8
), pp.
1311
1332
.
11.
Marchisio
,
D. L.
,
Vigil
,
R. D.
, and
Fox
,
R. O.
, 2003, “
Quadrature Method of Moments for Aggregation-Breakage Processes
,”
J. Colloid Interface Sci.
0021-9797,
258
, pp.
322
334
.
12.
Dorao
,
C. A.
, and
Jakobsen
,
H. A.
, 2006, “
A Least Squares Method for the Solution of Population Balance Problems
,”
Comput. Chem. Eng.
0098-1354,
30
, pp.
535
547
.
13.
Yao
,
W.
, and
Morel
,
C.
, 2004, “
Volumetric Interfacial Area Prediction in Upwards Bubbly Two-Phase Flow
,”
Int. J. Heat Mass Transfer
0017-9310,
47
, pp.
307
328
.
14.
Chen
,
P.
,
Sanyal
,
J.
, and
Duduković
,
M. P.
, 2005, “
Numerical Simulation of Bubble Columns Flows: Effect of Different Breakup and Coalescence Closures
,”
Chem. Eng. Sci.
0009-2509,
60
(
4
), pp.
1085
1101
.
15.
Yeoh
,
G. H.
, and
Tu
,
J. Y.
, 2006, “
Two-Fluid and Population Balance Models for Subcooled Boiling Flow
,”
Appl. Math. Model.
0307-904X,
30
, pp.
1370
1391
.
16.
Cheung
,
S. C. P.
,
Yeoh
,
G. H.
, and
Tu
,
J. Y.
, 2007, “
On the Modelling of Population Balance in Isothermal Vertical Bubbly Flows—Average Bubble Number Density Approach
,”
Chem. Eng. Process.
0255-2701,
46
, pp.
742
756
.
17.
Jakobsen
,
H. A.
,
Lindborg
,
H.
, and
Dorao
,
C. A.
, 2005, “
Modeling of Bubble Column Reactors: Progress and Limitations
,”
Ind. Eng. Chem. Res.
0888-5885,
44
, pp.
5107
5151
.
18.
Krepper
,
E.
,
Lucas
,
D.
, and
Prasser
,
H. M.
, 2005, “
On the Modelling of Bubbly Flow in Vertical Pipes
,”
Nucl. Eng. Des.
0029-5493,
235
, pp.
597
611
.
19.
Lo
,
S.
, 1996, “
Application of the MUSIG Model to Bubbly Flows
,” AEA Technology, Technical Report No. AEAT-1096.
20.
Lucas
,
D.
,
Krepper
,
E.
, and
Prasser
,
H. M.
, 2001, “
Prediction of Radial Gas Profiles in Vertical Pipe Flow on Basis of the Bubble Size Distribution
,”
Int. J. Therm. Sci.
1290-0729,
40
, pp.
217
225
.
21.
Esmaeeli
,
A.
, and
Tryggvason
,
G.
, 1998, “
Direct Numerical Simulations of Bubbly Flows. Part 1—Low Reynolds Number Arrays
,”
J. Fluid Mech.
0022-1120,
377
, pp.
313
345
.
22.
Bunner
,
B.
, and
Tryggvason
,
G.
, 2002, “
Dynamics of Homogeneous Bubbly Flows: Part 1. Rise Velocity and Microstructure of the Bubbles
,”
J. Fluid Mech.
0022-1120,
466
, pp.
17
52
.
23.
Bunner
,
B.
, and
Tryggvason
,
G.
, 2002, “
Dynamics of Homogeneous Bubbly Flows: Part 2. Velocity Fluctuations
,”
J. Fluid Mech.
0022-1120,
466
, pp.
53
84
.
24.
Bunner
,
B.
, and
Tryggvason
,
G.
, 2003, “
Effect of Bubble Deformation on the Properties of Bubbly Flows
,”
J. Fluid Mech.
0022-1120,
495
, pp.
77
118
.
25.
Biswas
,
S.
,
Esmaeeli
,
A.
, and
Tryggvason
,
G.
, 2005, “
Comparison of Results From DNS of Bubbly Flows With a Two Fluid Model for the Two-Dimensional Laminar Flows
,”
Int. J. Multiphase Flow
0301-9322,
31
, pp.
1036
1048
.
26.
Shnip
,
A. I.
,
Kolhatkar
,
R. V.
,
Swamy
,
D.
, and
Joshi
,
J. B.
, 1992, “
Criteria for Transition From the Homogeneous to Heterogeneous Regime in Two-Dimensional Bubble Column Reactors
,”
Int. J. Multiphase Flow
0301-9322,
18
(
5
), pp.
705
726
.
27.
Olmos
,
E.
,
Gentric
,
C.
,
Vial
,
C.
,
Wild
,
G.
, and
Midoux
,
N.
, 2001, “
Numerical Simulation of Multiphase Flow in Bubble Column Reactors. Influence of Bubble Coalescence and Break-Up
,”
Chem. Eng. Sci.
0009-2509,
56
, pp.
6359
6365
.
28.
Olmos
,
E.
,
Gentric
,
C.
,
Ponsin
,
S.
, and
Midoux
,
N.
, 2003, “
Description of Flow Regime Transitions in Bubble Columns Via Laser Doppler Anemometry Signal Processing
,”
Chem. Eng. Sci.
0009-2509,
58
, pp.
1731
1742
.
29.
Sankaranarayanan
,
K.
, and
Sundaresan
,
S.
, 2002, “
Lift Force in Bubbly Suspensions
,”
Chem. Eng. Sci.
0009-2509,
57
, pp.
3521
3542
.
30.
Taitel
,
Y.
,
Bornea
,
D.
, and
Dukler
,
A. E.
, 1980, “
Modelling Flow Pattern Transitions for Steady Upward Gas-Liquid Flow in Vertical Tubes
,”
AIChE J.
0001-1541,
26
(
3
), pp.
345
354
.
31.
Dukler
,
A. E.
, and
Taitel
,
Y.
, 1977, “
Flow Regime Transitions for Vertical Upward Gas Liquid Flow
,” Houston University, Progress Report No. 2, NUREG-0163.
32.
Mishima
,
K.
, and
Ishii
,
M.
, 1984, “
Flow Regime Transition Criteria for Upward Two-Phase Flow in Vertical Tubes
,”
Int. J. Heat Mass Transfer
0017-9310,
27
, pp.
723
737
.
33.
Anderson
,
T. B.
, and
Jackson
,
R.
, 1967, “
A Fluid Mechanical Description of Fluidized Beds: Equations of Motion
,”
Ind. Eng. Chem. Fundam.
0196-4313,
6
, pp.
527
539
.
34.
Richter
,
H. J.
, 1983, “
Separated Two-Phase Flow Model: Application to Critical Two Phase Flow
,”
Int. J. Multiphase Flow
0301-9322,
9
(
5
), pp.
511
530
.
35.
Chisholm
,
D.
, 1973, “
Pressure Gradient Due to Friction During the Flow of Evaporating Two Phase Mixtures in Smooth Tubes and Channel
,”
Int. J. Heat Mass Transfer
0017-9310,
16
, pp.
347
358
.
36.
Burns
,
A. D.
,
Frank
,
T.
,
Hamill
,
I.
, and
Shi
,
J.
, 2004, “
The Farve Averaged Drag Model for Turbulent Dispersion in Eulerian Multi-Phase Flows
,”
Proceedings of the Fifth International Conference on Multiphase Flow
, Yokohama, Japan.
37.
Ramkrishna
,
D.
, 2000,
Population Balances—Theory and Applications to Particulate Systems in Engineering
,
Academic
,
San Diego, CA
.
38.
Wang
,
T.
,
Wang
,
J.
, and
Jin
,
J.
, 2003, “
A Novel Theoretical Breakup Kernel Function for Bubbles/Droplets in a Turbulent Flow
,”
Chem. Eng. Sci.
0009-2509,
58
, pp.
4629
4637
.
39.
Luo
,
H.
, and
Svendsen
,
H. F.
, 1996, “
Theoretical Model for Drop and Bubble Breakup in Turbulent Dispersions
,”
AIChE J.
0001-1541,
42
, pp.
1225
1233
.
40.
Kostoglou
,
M.
, and
Karabelas
,
A. J.
, 2005, “
Towards a Unified Framework for the Derivation of Breakage Functions Based on the Statistical Theory of Turbulence
,”
Chem. Eng. Sci.
0009-2509,
60
, pp.
6584
6595
.
41.
Ioannou
,
K.
,
Hu
,
B.
,
Matar
,
O. K.
,
Hewitt
,
G. F.
, and
Angeli
,
P.
, 2004, “
Phase Inversion in Dispersed Liquid–Liquid Pipe Flows
,”
Proceedings of the Fifth International Conference on Multiphase Flow
, Yokohama, Japan.
42.
Tsouris
,
C.
, and
Tavlarides
,
L. L.
, 1994, “
Breakage and Coalescence Models for Drops in Turbulent Dispersions
,”
AIChE J.
0001-1541,
40
, pp.
395
406
.
43.
Troshko
,
A. A.
, and
Zdravistch
,
F.
, 2009, “
CFD Modeling of Slurry Bubble Column Reactors for Fisher–Tropsch Synthesis
,”
Chem. Eng. Sci.
0009-2509,
64
, pp.
892
903
.
44.
Carrica
,
P. M.
, and
Clausse
,
A. A.
, 1993, “
Mathematical Description of the Critical Heat Flux as Nonlinear Dynamic Instability
,”
Instabilities in Multiphase Flow
,
G.
Gouesbet
and
A.
Berlemont
, eds.,
Plenum
,
New York
.
45.
Kostoglou
,
M.
, and
Karabelas
,
A. J.
, 1998, “
Theoretical Analysis of Steady State Particle Size Distribution in Limited Breakage Process
,”
J. Phys. A
0305-4470,
31
, pp.
8905
8921
.
46.
Tomiyama
,
A.
,
Nakahara
,
Y.
,
Adachi
,
Y.
, and
Hosokawa
,
S.
, 2003, “
Shapes and Rising Velocities of Single Bubbles Rising Through an Inner Subchannel
,”
J. Nucl. Sci. Technol.
0022-3131,
40
, pp.
136
142
.
47.
Coulaloglou
,
C. A.
, and
Tavlarides
,
L. L.
, 1977, “
Description of Interaction Processes in Agitated Liquid-Liquid Dispersions
,”
Chem. Eng. Sci.
0009-2509,
32
, pp.
1289
1297
.
48.
Chesters
,
A. K.
, 1991, “
The Modelling of Coalescence Processes in Fluid-Liquid Dispersions: A Review of Current Understanding
,”
Trans. Inst. Chem. Eng.
0371-7496,
69
, pp.
259
270
.
49.
Lovick
,
J.
, 2004, “
Horizontal Oil-Water Flows in the Dual Continuous Flow Regime
,” Ph.D. thesis, University College London, England.
50.
Hu
,
H. G.
, and
Zhang
,
C.
, 2007, “
A Modified k−ε Turbulence Model for the Simulation of Two-Phase Flow and Heat Transfer in Condensers
,”
Int. J. Heat Mass Transfer
0017-9310,
50
, pp.
1641
1648
.
51.
Ekambara
,
K.
,
Sanders
,
R. S.
,
Nandakumar
,
K.
, and
Masliyah
,
J. H.
, 2008, “
CFD Simulation of Bubbly Two-Phase Flow in Horizontal Pipes
,”
Chem. Eng. J.
0300-9467,
144
, pp.
277
288
.
52.
Prosperetti
,
A.
, and
Tryggvason
,
G.
, 2007, “
Introduction: A Computational Approach to Multiphase Flow
,”
A.
Prosperetti
and
G.
Tryggvason
, eds.,
Computational Methods for Multiphase Flow
,
Cambridge University Press
,
Cambridge, England
.
53.
Tomiyama
,
A.
, and
Shimada
,
N.
, 2001, “
A Numerical Method for Bubbly Flow Simulation Based on a Multi-Fluid Model
,”
ASME J. Pressure Vessel Technol.
0094-9930,
123
, pp.
510
516
.
54.
Schumann
,
U.
, 1975, “
Subgrid Scale Model for Finite Difference Simulations of Turbulent Flows in Plane Channels and Annuli
,”
J. Comput. Phys.
0021-9991,
18
, pp.
376
404
.
55.
Serizawa
,
A.
,
Kataoka
,
I.
, and
Michiyoshi
,
I.
, 1975, “
Turbulence Structure of Air-Water Bubbly Flow—II. Local Properties
,”
Int. J. Multiphase Flow
0301-9322,
2
, pp.
235
246
.
56.
Ohnuki
,
A.
, and
Akimoto
,
H.
, 2000, “
Experimental Study on Transition of Flow Pattern and Phase Distribution in Upward Air-Water Two-Phase Flow Along a Large Vertical Pipe
,”
Int. J. Multiphase Flow
0301-9322,
26
(
3
), pp.
367
386
.
57.
Shen
,
X.
,
Mishima
,
K.
, and
Nakamura
,
H.
, 2005, “
Two-Phase Phase Distribution in a Vertical Large Diameter Pipe
,”
Int. J. Heat Mass Transfer
0017-9310,
48
(
1
), pp.
211
225
.
58.
Nakoryakov
,
V. E.
,
Kashinsky
,
O. N.
,
Randin
,
V. V.
, and
Timkin
,
L. S.
, 1996, “
Gas Liquid Bubbly Flow in Vertical Pipes. Data Bank Contribution
,”
ASME J. Fluids Eng.
0098-2202,
118
, pp.
377
382
.
59.
Lucas
,
D.
,
Krepper
,
E.
, and
Prasser
,
H. M.
, 2005, “
Development of Co-Current Air-Water Flow in a Vertical Pipe
,”
Int. J. Multiphase Flow
0301-9322,
31
, pp.
1304
1328
.
60.
Radovicich
,
N. A.
, and
Moissis
,
R.
, 1962, “
The Transition From Twophase Bubble Flow to Slug Flow
,” MIT Technical Report No. 7-7633-22.
61.
Bilicki
,
Z.
, and
Kestin
,
J.
, 1987, “
Transition Criteria for Two Phase Flow Patterns in Vertical Upward Flow
,”
Int. J. Multiphase Flow
0301-9322,
13
, pp.
283
294
.
62.
Mercadier
,
Y.
, 1981, “
Contribution al'etude des propagations de perturbations de taux de vide dans les ecoulements diphasiques eau-air a’ bulles
,” Ph.D. thesis, Institut National Polytechnique de Grenoble, Universite’ Scientifique et Me’dicale, France.
63.
Matuszkiewicz
,
A.
,
Flamand
,
J. C.
, and
Boure
,
J. A.
, 1987, “
The Bubble Slug Flow Pattern Transition and Instabilities of Void Fraction Waves
,”
Int. J. Multiphase Flow
0301-9322,
13
, pp.
199
217
.
64.
Sun
,
B.
,
Wang
,
R.
,
Zhao
,
X.
, and
Yan
,
D.
, 2002, “
The Mechanism for the Formation of Slug Flow in Vertical Gas-Liquid Two Phase Flow
,”
Solid-State Electron.
0038-1101,
46
, pp.
2323
2329
.
65.
Krussenberg
,
A. K.
,
Prasser
,
H. M.
, and
Schaffrath
,
A.
, 1999, “
A New Criterion for the Bubble Slug Transition in Vertical Tubes
,”
Proceedings of the Ninth International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-9)
, San Francisco, CA.
66.
Hinze
,
J.
, 1955,
Turbulence
,
McGraw-Hill
,
New York
.
67.
Brauner
,
N.
, 2001, “
The Prediction of Dispersed Flows Boundaries in Liquid-Liquid and Gas-Liquid Systems
,”
Int. J. Multiphase Flow
0301-9322,
27
, pp.
885
910
.
You do not currently have access to this content.