We use proper orthogonal decomposition (POD) to estimate the flow in the near-wall region based on information from the outer buffer layer. Our goal is to assess how the flow structures in the inner wall region are connected to those further away from the wall, and to investigate the nature of the coupling between the inner and the outer region in the POD framework. Reconstructions are carried out for numerical simulations of a plane channel flow at two different Reynolds numbers. We show that elongated structures with a spanwise wavelength smaller than a critical value tend to be concentrated in the inner layer. The critical wavelength is shown to scale with the inner layer height, and interactions between the inner and the outer layer appear to take place predominantly over a self-similar, height-dependent, range of wavenumbers, in agreement with Townsend’s attached eddy hypothesis. The reconstructed field appears to capture an adequate energy content and to remain correlated with the real field even close to the wall, which reflects the persistence of energetic structures over the extent of the buffer layer.

1.
Theodorsen
,
T.
, 1952, “
Mechanism of Turbulence
,”
Proceedings of the Second Midwestern Conference on Fluid Mechanics
, Ohio State University.
2.
Head
,
M. R.
, and
Bandyopdhyay
,
P.
, 1981, “
New Aspects of Turbulent Boundary-Layer Structure
,”
J. Fluid Mech.
0022-1120,
107
, pp.
297
338
.
3.
Perry
,
A. E.
, and
Chong
,
M. S.
, 1982, “
On the Mechanism of Wall Turbulence
,”
J. Fluid Mech.
0022-1120,
119
, pp.
173
217
.
4.
Bakewell
,
H. P.
, and
Lumley
,
J. L.
, 1967, “
Viscous Sublayer and Adjacent Wall Region in Turbulent Pipe Flow
,”
Phys. Fluids
1070-6631,
10
(
9
), pp.
1880
1889
.
5.
Zhou
,
J.
,
Adrian
,
R. J.
,
Balachandar
,
S.
, and
Kendall
,
T. M.
, 1999, “
Mechanisms for Generating Coherent Packets of Hairpin Vortices in Channel Flow
,”
J. Fluid Mech.
0022-1120,
387
, pp.
353
396
.
6.
Adrian
,
R. J.
,
Meinhart
,
C. D.
, and
Tomkins
,
C. D.
, 2000, “
Vortex Organization in the Outer Region of the Turbulent Boundary Layer
,”
J. Fluid Mech.
0022-1120,
422
, pp.
1
54
.
7.
Morrison
,
W. R. B.
, and
Kronauer
,
R. E.
, 1969, “
Structural Similarity for Fully Developed Turbulence in Smooth Tubes
,”
J. Fluid Mech.
0022-1120,
39
(
1
), pp.
117
141
.
8.
Liu
,
Z.
,
Adrian
,
R. J.
, and
Hanratty
,
T. J.
, 2001, “
Large-Scale Modes of Turbulent Channel Flow: Transport and Structure
,”
J. Fluid Mech.
0022-1120,
448
, pp.
53
80
.
9.
del Álamo
,
J. C.
,
Jiménez
,
J.
,
Zandonade
,
P.
, and
Moser
,
R. D.
, 2006, “
Self-Similar Vortex Clusters in the Turbulent Logarithmic Region
,”
J. Fluid Mech.
0022-1120,
561
, pp.
329
358
.
10.
Keating
,
A.
, and
Piomelli
,
U.
, 2006, “
A Dynamic Stochastic Forcing Method as a Wall-Layer Model for Large-Eddy Simulation
,”
J. Turbul.
1468-5248,
7
(
12
), pp.
1
24
.
11.
Deardorff
,
J. W.
, 1970, “
Numerical Study of Three Dimensional Turbulent Channel Flow at Large Reynolds Numbers
,”
J. Fluid Mech.
0022-1120,
41
, pp.
453
480
.
12.
Piomelli
,
U.
,
Ferziger
,
J.
, and
Moin
,
P.
, 1989, “
New Approximate Boundary Conditions for Large Eddy Simulations of Wall-Bounded Flows
,”
Phys. Fluids A
0899-8213,
1
(
6
), pp.
1061
1068
.
13.
Kalitzin
,
G.
,
Medic
,
G.
, and
Templeton
,
J. A.
, 2008, “
Wall Modeling for LES of High Reynolds Number Channel Flows: What Turbulence Information Is Retained?
,”
Comput. Fluids
0045-7930,
37
, pp.
809
815
.
14.
Nicoud
,
F.
,
Baggett
,
J. S.
,
Moin
,
P.
, and
Cabot
,
W.
, 2001, “
Large Eddy Simulation Wall-Modeling Based on Suboptimal Control Theory and Linear Stochastic Estimation
,”
Phys. Fluids
1070-6631,
13
(
10
), pp.
2968
2984
.
15.
Templeton
,
J. A.
,
Wang
,
M.
, and
Moin
,
P.
, 2008, “
A Predictive Wall Model for Large-Eddy Simulation Based on Optimal Control Techniques
,”
Phys. Fluids
1070-6631,
20
, p.
065104
.
16.
Cabot
,
W.
, 1996, “
Near-All Models in Large Eddy Simulations of Flow Behind a Backward-Facing Step
,” Annual Research Briefs 1996, Center for Turbulance Research, NASA Ames/Stanford University, pp.
199
210
.
17.
Townsend
,
A. A.
, 1976,
The Structure of Turbulent Shear Flow
,
Cambridge University Press
,
Cambridge, England
.
18.
Bradshaw
,
P.
, 1967, “
‘Inactive’ Motion and Pressure Fluctuations in Turbulent Boundary Layers
,”
J. Fluid Mech.
0022-1120,
30
, pp.
241
258
.
19.
Piomelli
,
U.
, and
Balaras
,
E.
, 2002, “
Wall-Layer Models for Large-Eddy Simulations
,”
Annu. Rev. Fluid Mech.
0066-4189,
34
, pp.
349
374
.
20.
Metzger
,
M. M.
, and
Klewicki
,
J. C.
, 2001, “
A Comparative Study of New-Wall Turbulence in High and Low Reynolds Number Boundary Layers
,”
Phys. Fluids
1070-6631,
13
, pp.
692
701
.
21.
Hutchins
,
N.
, and
Marusic
,
I.
, 2007, “
Evidence of Very Long Meandering Features in the Logarithmic Region of the Turbulent Boundary Layer
,”
J. Fluid Mech.
0022-1120,
579
, pp.
1
28
.
22.
Mathis
,
R.
,
Hutchins
,
N.
, and
Marusic
,
I.
, 2009, “
Large-Scale Amplitude Modulation of the Small-Scale Structures in Turbulent Boundary Layers
,”
J. Fluid Mech.
0022-1120,
628
, pp.
311
337
.
23.
Lumley
,
J. L.
, 1967, “
The Structure of Inhomogeneous Turbulent Flows
,”
Atmospheric Turbulence and Radio Wave Propagation
,
A. M.
Iaglom
and
V. I.
Tatarski
, eds.,
Nauka
,
Moscow
, pp.
221
227
.
24.
Tomkins
,
C. D.
, and
Adrian
,
R. J.
, 2005, “
Energetic Spanwise Modes in the Logarithmic Layer of a Turbulent Boundary Layer
,”
J. Fluid Mech.
0022-1120,
545
, pp.
141
162
.
25.
Orlandi
,
P.
, and
Jiménez
,
J.
, 1994, “
On the Generation of Turbulent Wall Friction
,”
Phys. Fluids
1070-6631,
6
(
2
), pp.
634
641
.
26.
Moin
,
P.
, and
Moser
,
R.
, 1989, “
Characteristic-Eddy Decomposition of Turbulence in a Channel
,”
J. Fluid Mech.
0022-1120,
200
, pp.
471
509
.
27.
Podvin
,
B.
, and
Lumley
,
J. L.
, 1998, “
Reconstructing the Flow in the Wall Region From Wall Sensors
,”
Phys. Fluids
1070-6631,
10
(
5
), pp.
1182
1191
.
28.
Podvin
,
B.
,
Fraigneau
,
Y.
,
Lusseyran
,
F.
, and
Gougat
,
P.
, 2006, “
A Reconstruction for the Flow Past an Open Cavity
,”
ASME J. Fluids Eng.
0098-2202,
128
(
3
), pp.
531
541
.
29.
Holmes
,
P.
,
Lumley
,
J. L.
, and
Berkooz
,
G.
, 1996,
Turbulence, Coherent Structures, Dynamical Systems and Symmetry
,
Cambridge University Press
,
Cambridge, England
.
30.
Pope
,
S.
, 2000,
Turbulent flows
,
Cambridge University Press
,
Cambridge, England
.
31.
Gadoin
,
E.
,
Le Quéré
,
P.
, and
Daube
,
O.
, 2001, “
A General Methodology for Investigating Flow Instability in Complex Geometries: Application to Natural Convection and Enclosures
,”
Int. J. Numer. Methods Fluids
0271-2091,
37
, pp.
175
208
.
32.
Hirsch
,
C.
, 2006,
Numerical Computation of External and Internal Flows: Introduction to the Fundamentals of CFD
,
Butterworth
,
Washington, DC
.
33.
Podvin
,
B.
, and
Lumley
,
J. L.
, 1998, “
A Low-Dimensional Approach for the Minimal Flow Unit
,”
J. Fluid Mech.
0022-1120,
362
, pp.
121
155
.
34.
Podvin
,
B.
, 2001, “
On the Adequacy of the Ten-Dimensional Model for the Wall Layer
,”
Phys. Fluids
1070-6631,
13
, pp.
210
224
.
35.
Podvin
,
B.
, 2009, “
A Pod-Based Model for the Wall Layer of a Turbulent Channel Flow
,”
Phys. Fluids
1070-6631,
21
(
1
), pp.
015111
.
36.
Germano
,
M.
,
Piomelli
,
U.
,
Moin
,
P.
, and
Cabot
,
W.
, 1991, “
A Dynamic Subgrid-Scale Eddy-Viscosity Model
,”
Phys. Fluids A
0899-8213,
3
, pp.
1760
1766
.
37.
Lilly
,
D. K.
, 1992, “
A Proposed Modification of the Germano Subgrid Scale Closure Method
,”
Phys. Fluids A
0899-8213,
4
, pp.
633
636
.
38.
Marquillie
,
M.
,
Laval
,
J. -P.
, and
Dolganov
,
R.
, 2008, “
Direct Numerical Simulation of Separated Channel Flows With a Smooth Profile
,”
J. Turbul.
1468-5248,
9
(
1
), pp.
1
23
.
39.
Aubry
,
N.
,
Holmes
,
P.
,
Lumley
,
J. L.
, and
Stone
,
E.
, 1988, “
The Dynamics of Coherent Structures in the Wall Region of the Wall Boundary Layer
,”
J. Fluid Mech.
0022-1120,
192
, pp.
115
173
.
40.
Jiménez
,
J.
, and
Pinelli
,
A.
, 1999, “
The Autonomous Cycle of Near-Wall Turbulence
,”
J. Fluid Mech.
0022-1120,
389
, pp.
335
359
.
41.
Jiménez
,
J.
,
del Álamo
,
J. C.
, and
Flores
,
O.
, 2004, “
The Large-Scale Dynamics of Near-Wall Turbulence
,”
J. Fluid Mech.
0022-1120,
505
, pp.
179
199
.
42.
Rajaee
,
M.
,
Karlsson
,
S.
, and
Sirovich
,
L.
, 1995, “
On the Streak Spacing and Vortex Roll Size in a Turbulent Channel Flow
,”
Phys. Fluids
1070-6631,
7
(
10
), pp.
2439
2443
.
43.
del Álamo
,
J. C.
, and
Jiménez
,
J.
, 2006, “
Linear Energy Amplification in Turbulent Channels
,”
J. Fluid Mech.
0022-1120,
559
, pp.
205
213
.
44.
Hinze
,
J. O.
, 1976,
Turbulence
,
McGraw-Hill
,
New York
.
45.
Corino
,
E. R.
, and
Brodkey
,
R. S.
, 1969, “
A Visual Investigation of the Wall Region in Turbulent Flow
,”
J. Fluid Mech.
0022-1120,
37
, pp.
1
30
.
46.
Robinson
,
S. K.
, 1991, “
Coherent Motions in the Turbulent Boundary Layer
,”
Annu. Rev. Fluid Mech.
0066-4189,
23
, pp.
601
639
.
47.
Jiménez
,
J.
, 2007, “
Recent Developments on Wall-Bounded Turbulence
,”
Rev. R. Acad. Cien. Exactas Fis. Nat. Ser. A Mat.
1578-7303,
101
(
2
), pp.
187
203
.
48.
Stanislas
,
M.
,
Perret
,
L.
, and
Foucaut
,
J. M.
, 2008, “
Vortical Structures in the Turbulent Boundary Layer: A Possible Route to a Universal Representation
,”
J. Fluid Mech.
0022-1120,
602
, pp.
327
382
.
49.
Tuktun
,
M.
, 2008, “
Structures of Zero Pressure Gradient High Reynolds Number Turbulent Boundary Layers
,” Ph.D. thesis, Chalmers University of Technology, Sweden.
50.
Press
,
W. H.
,
Teukolsky
,
S. A.
,
Vettering
,
W. T.
, and
Flannery
,
B. P.
, 1992,
Numerical Recipes in Fortran
,
Cambridge University Press
,
Cambridge, England
.
51.
Hamilton
,
J. M.
,
Kim
,
J.
, and
Waleffe
,
F.
, 1995, “
Regeneration Mechanisms of Near-Wall Turbulence Structures
,”
J. Fluid Mech.
0022-1120,
287
, pp.
317
348
.
You do not currently have access to this content.