Two factors of great importance when considering gas–solid fluidized bed dynamics are pressure drop and void fraction, which is the volume fraction of the gas phase. It is, of course, possible to obtain pressure drop and void fraction data through experiments, but this tends to be costly and time consuming. It is much preferable to be able to efficiently computationally model fluidized bed dynamics. In the present work, ANSYS Fluent® is used to simulate fluidized bed dynamics using an Eulerian–Eulerian multiphase flow model. By comparing the simulations using Fluent to experimental data as well as to data from other fluidized bed codes such as Multiphase Flow with Interphase eXchanges (MFIX), it is possible to show the strengths and limitations with respect to multiphase flow modeling. The simulations described herein will present modeling beds in the unfluidized regime, where the inlet gas velocity is less than the minimum fluidization velocity, and will deem to shed some light on the discrepancies between experimental data and simulations. In addition, this paper will also include comparisons between experiments and simulations in the fluidized regime using void fraction.

References

References
1.
Kunii
,
D.
, and
Levenspiel
,
O.
,
1991
,
Fluidization Engineering
,
Butterworth-Heinemann
,
Boston, MA
.
2.
Demirbas
,
A.
, and
Arin
,
G.
,
2002
, “
An Overview of Biomass Pyrolysis
,”
Energy Sources
,
24
(
5
), pp.
471
482
.10.1080/00908310252889979
3.
Cui
,
H.
, and
Grace
,
J. R.
,
2007
, “
Fluidization of Biomass Particles: A Review of Experimental Multiphase Flow Aspects
,”
Chem. Eng. Sci.
,
62
(
1–2
), pp.
45
55
.10.1016/j.ces.2006.08.006
4.
Papadikis
,
K.
,
Bridgewater
,
A.
, and
Gub
,
S.
,
2008
, “
CFD Modeling of the Fast Pyrolysis of Biomass in Fluidized Bed Reactors, Part A: Eulerian Computation of Momentum Transport in Bubbling Fluidized Beds
,”
Chem. Eng. Sci.
,
63
(
16
), pp.
4218
4227
.10.1016/j.ces.2008.05.045
5.
Gidaspow
,
D.
,
1994
,
Multiphase Flow and Fluidization: Continuum and Kinetic Theory Descriptions
,
Academic
,
Boston, MA
.
6.
Deza
,
M.
,
2012
, “
Modeling the Hydrodynamics of a Biomass Fluidized Bed
,” Ph.D. thesis, Virginia Tech, Blacksburg, VA.
7.
Benyahia
,
S.
,
Arastoopour
,
H.
,
Knowlton
,
T. M.
, and
Massah
,
H.
,
2000
, “
Simulation of Particles and Gas Flow Behavior in the Riser Section of a Circulating Fluidized Bed Using the Kinetic Theory Approach for the Particulate Phase
,”
Powder Technol.
,
112
(
1–2
), pp.
24
33
.10.1016/S0032-5910(99)00302-2
8.
Taghipour
,
F.
,
Ellis
,
N.
, and
Wong
,
C.
,
2005
, “
Experimental and Computational Study of Gas–Solid Fluidized Bed Hydrodynamics
,”
Chem. Eng. Sci.
,
60
(
24
), pp.
6857
6867
.10.1016/j.ces.2005.05.044
9.
Sahoo
,
A.
,
Ramesh
,
C.
, and
Biswal
,
K. C.
,
2009
, “
Experimental and Computational Study of the Bed Dynamics of Semi-Cylindrical Gas–Solid Fluidized Bed
,”
Can. J. Chem. Eng.
,
87
(
1
), pp.
11
18
.10.1002/cjce.20134
10.
Herzog
,
N.
,
Schreiber
,
M.
,
Egbers
,
C.
, and
Krautz
,
H. J.
,
2012
, “
A Comparative Study of Different CFD-Codes for Numerical Simulation of Gas–Solid Fluidized Bed Hydrodynamics
,”
Comput. Chem. Eng.
,
39
, pp.
41
46
.10.1016/j.compchemeng.2011.12.002
11.
Ergun
,
S.
,
1952
, “
Fluid Flow Through Packed Columns
,”
Chem. Eng. Progress
,
48
(
2
), pp.
89
94
.
12.
Gera
,
D.
, and
Gautum
,
M.
,
1995
, “
Analysis of Throughflow Velocity in Two-Dimensional Fluidized Bed Bubbles
,”
ASME J. Fluids Eng.
,
117
(
2
), pp.
319
322
.10.1115/1.2817149
13.
Delebarre
,
A.
,
2002
, “
Does the Minimum Fluidization Velocity Exist?
ASME J. Fluids Eng.
,
124
(
9
), pp.
595
600
.10.1115/1.1490377
14.
ANSYS, Inc.
,
2009
, Release 12.0 FLUENT Theory Guide.
15.
Deza
,
M.
,
Franka
,
N. P.
,
Heindel
,
T. J.
, and
Battaglia
,
F.
,
2009
, “
CFD Modeling and X-ray Imaging of Biomass in a Fluidized Bed
,”
ASME J. Fluids Eng.
,
131
(
11
), p.
111303
.10.1115/1.4000257
16.
Kanholy
,
S. K.
,
Chodak
,
J.
,
Lattimer
,
B. Y.
, and
Battaglia
,
F.
,
2012
, “
Modeling and Predicting Gas–Solid Fluidized Bed Dynamics to Capture Nonuniform Inlet Conditions
,”
ASME J. Fluids Eng.
,
134
(
11
), p.
111303
.10.1115/1.4007803
17.
Lun
,
C. K. K.
,
Savage
,
S. B.
, and
Jeffrey
,
D. J.
,
1984
, “
Kinetic Theories for Granular Flow—Inelastic Particles in Coutte-Flow and Slightly Inelastic Particles in a General Flowfield
,”
J. Fluid Mech.
,
140
, pp.
223
256
.10.1017/S0022112084000586
18.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere
,
Washington, DC
.
19.
Leonard
,
B. P.
,
1979
, “
A Stable and Accurate Convective Modeling Procedure Based on Quadratic Upstream Interpolation
,”
Comput. Methods Appl. Mech. Eng.
,
19
, pp.
59
98
.10.1016/0045-7825(79)90034-3
20.
Gavi
,
E.
,
Heindel
,
T. J.
, and
Fox
,
R. O.
,
2010
, “
Modeling Fluidization in Biomass Gasification Processes
,”
7th International Conference on Multiphase Flow
, ICMF 2010, Tampa, FL, May 30–June 4, Paper No. 1956.
21.
Franka
,
N. P.
, and
Heindel
,
T. J.
,
2009
, “
Local Time-Averaged Gas Holdup in a Fluidized Bed With Side Air Injection Using X-Ray Computed Tomography
,”
Powder Technol.
,
193
(
1
), pp.
69
78
.10.1016/j.powtec.2009.02.008
22.
Battaglia
,
F.
,
England
,
J. A.
,
Kanholy
,
S.
, and
Deza
,
M.
,
2010
, “
On the Modeling of Gas–Solid Fluidization: Which Physics Are Most Important to Capture?
,”
Proceedings of the ASME 2010 International Mechanical Engineering Congress and Exposition
, IMECE2010-40213, Vol.
7
: Fluid Flow, Heat Transfer and Thermal Systems, Parts A and B, pp.
1111
1120
.
23.
Teaters
,
L.
,
2012
, “
A Computational Study of the Hydrodynamics of Gas–Solid Fluidized Beds
,” M.S. thesis, Virginia Tech, Blacksburg, VA.
24.
Johnson
,
P. C.
, and
Jackson
,
R.
,
1987
, “
Frictional-Collisional Constitutive Relations for Granular Materials, With Application to Plane Shearing
,”
J. Fluid Mech.
,
176
, pp.
67
93
.10.1017/S0022112087000570
25.
Schaeffer
,
D. G.
,
1987
, “
Instability in the Evolution Equations Describing Incompressible Granular Flow
,”
J. Differ. Eq.
,
66
(
1
), pp.
19
50
.10.1016/0022-0396(87)90038-6
26.
Syamlal
,
M.
, and
O'Brien
,
T. J.
,
1989
, “
Computer Simulation of Bubbles in a Fluidized Bed
,”
Am. Inst. Chem. Eng. Symp. Ser.
,
85
, pp.
22
31
.
27.
Strasser
,
W.
,
2010
, “
CFD Study of an Evaporative Trickle Bed Reactor: Mal-Distribution and Thermal Runaway Induced by Feed Disturbances
,”
Chem. Eng. J.
,
161
(
1–2
), pp.
257
268
.10.1016/j.cej.2010.04.049
You do not currently have access to this content.