The finite element method is used to simulate the near-wake of an elliptical cylinder undergoing rotationally oscillating motion at low Reynolds number, 50 ≤ Re ≤ 150. Reynolds number is based on equivalent diameter of the ellipse. The rotationally oscillating motion was carried out by varying the angle of attack between 10 deg and 60 deg, while the considered oscillation frequencies are between St/4 and 4 × St, where St is the Strouhal number of a stationary elliptical cylinder with zero angle of attack. Fluid flow results are presented in terms of lift and drag coefficients for rotationally oscillating case. The details of streamlines and vorticity contours are also presented for a few representative cases. The result indicates that at when the frequency is equal to the Strouhal number, the root-mean-square (RMS) of lift coefficient reaches its local minimum, while the average of drag coefficient reaches its local maximum. Increasing the Reynolds number increases the RMS of lift coefficient and decreases average of drag coefficient.

References

1.
Gowda
,
Y.
,
Patnaik
,
B.
,
Narayana
,
P.
, and
Seetharamu
,
K.
,
1998
, “
Finite Element Simulation of Transient Laminar Flow and Heat Transfer past an In-Line Tube Bank
,”
Int. J. Heat Fluid Flow
,
19
(
1
), pp.
49
55
.10.1016/S0142-727X(97)10005-4
2.
Zhang
,
L.
, and
Balachandar
,
S.
,
2006
, “
Onset of vortex Shedding in a Periodic Array of Circular Cylinders
,”
ASME J. Fluids Eng.
,
128
(
5
), pp.
1101
1105
.10.1115/1.2201630
3.
Stanescu
,
G.
,
Fowler
,
A.
, and
Bejan
,
A.
,
1996
, “
The Optimal Spacing of Cylinders in Free-Stream Cross-Flow Forced Convection
,”
Int. J. Heat Mass Transfer
,
39
(
2
), pp.
311
317
.10.1016/0017-9310(95)00122-P
4.
Zukauskas
,
A.
,
1987
, “
Heat Transfer From Tubes in Cross Flow
,”
Adv. Heat Transfer
,
18
, pp.
87
157
.10.1016/S0065-2717(08)70118-7
5.
El-Shaboury
,
A.
, and
Ormiston
,
S.
,
2005
, “
Analysis of Laminar Forced Convection of Air Cross flow in In-Line Tube Banks With Non-Square Arrangements
,”
Num. Heat Transfer Part A
,
48
(
2
), pp.
99
126
.10.1080/10407780590945452
6.
Dehkordi
,
B.
, and
Jafari
,
H.
,
2010
, “
On the Suppression of Vortex Shedding From Circular Cylinders Using Detached Short Splitter-Plate
,”
ASME J. Fluids Eng.
,
132
(
4
), p.
044501
.10.1115/1.4001384
7.
Faruquee
,
Z.
,
Ting
,
D.
,
Fartaj
,
A.
,
Barron
,
R.
, and
Carriveau
,
R.
,
2007
, “
The Effect of Axis Ratio on Laminar Fluid Flow Around an Elliptical Cylinder
,”
Int. J. Heat Fluid Flow
,
28
(
5
), pp.
1178
1189
.10.1016/j.ijheatfluidflow.2006.11.004
8.
Ahmad
,
E.
, and
Badr
,
H.
,
2002
, “
Mixed Convection From an Elliptical Tube at Different Angle of Attack Placed in a Fluctuating Free Stream
,”
Heat Transfer Eng.
,
23
(
5
), pp.
45
61
.10.1080/01457630290098637
9.
D'Alessio
,
S.
,
Saunders
,
M.
, and
Harmsworth
,
D.
,
2003
, “
Forced and Mixed Convection Heat Transfer Form Accelerated Flow Past an Elliptical Cylinder
,”
Int. J. Heat Mass Transfer
,
46
(
16
), pp.
2927
2946
.10.1016/S0017-9310(03)00090-5
10.
Alawadhi
,
E.
,
2010
, “
Laminar Forced Convection Flow Past an In-Line Elliptical Cylinder Array With Inclination
,”
ASME J. Heat Transfer
,
132
(
7
), p.
071701
.10.1115/1.4000061
11.
Zhao
,
M.
,
Tong
,
F.
, and
Cheng
,
L.
,
2012
, “
Numerical Simulation of Two-Degree-of-Freedom Vortex-Induced Vibration of a Circular Cylinder Between Two Lateral Plane Walls in Steady Currents
,”
ASME J. Fluids Eng.
,
134
(
10
), p.
104501
.10.1115/1.4007426
12.
Kumar
,
S.
,
Cantu
,
C.
, and
Gonzalez
,
B.
,
2011
, “
Flow Past a Rotational Cylinder at Low and High Rotational Rates
,”
ASME J. Fluid Eng.
,
133
(
4
), p.
041201
.10.1115/1.4003984
13.
Koopman
,
G.
,
1967
, “
The Vortex Makes of Vibrating Cylinders at Low Reynolds Numbers
,”
J. Fluids Mech.
,
28
(
3
), pp.
501
512
.10.1017/S0022112067002253
14.
Nobari
,
M.
, and
Naderan
,
H.
,
2006
, “
A Numerical Study of Flow Past a Cylinder With Cross Flow and Inline Oscillation
,”
Comput. Fluids
,
35
(
4
), pp.
393
415
.10.1016/j.compfluid.2005.02.004
15.
Zheng
,
Z.
, and
Zhang
,
N.
,
2008
, “
Frequency Effects on Lift and Drag for Flow Past an Oscillating Cylinder
,”
J. Fluids Struct.
,
24
(
3
), pp.
382
399
.10.1016/j.jfluidstructs.2007.08.010
16.
Mathelin
,
L.
,
Batalle
,
F.
, and
Lallemand
,
A.
,
2002
, “
The Effect of Uniform Blowing on Flow Past a Cylinder
,”
ASME J. Fluids Eng.
,
124
(
2
), pp.
452
464
.10.1115/1.1467919
17.
Yoon
,
H.
,
Lee
,
J.
, and
Chun
,
H.
,
2007
, “
A Numerical Study of the Fluid Flow and Heat Transfer Around a Circular Cylinder Near a Moving Wall
,”
Int. J. Heat Mass Transfer
,
50
(
17–18
), pp.
3507
3520
.10.1016/j.ijheatmasstransfer.2007.01.012
18.
Nobari
,
M.
, and
Ghazanfarian
,
J.
,
2009
, “
A Numerical Investigation of Fluid Flow over a Rotating Cylinder With Cross Flow Oscillation
,”
Comput. Fluids
,
38
(
10
), pp.
2026
2036
.10.1016/j.compfluid.2009.06.008
19.
Chen
,
S.
, and
Yen
,
R.
,
2011
, “
Resonant Phenomenon of Elliptical Cylinder Flows in a Subcritical Regime
,”
Phys. Fluids
,
23
(
11
), p.
114105
.10.1063/1.3662003
20.
D'Alessio
,
S.
, and
Kocabiyik
,
S.
,
2001
, “
Numerical Simulation of the Flow Induced by a Transversely Oscillating Inclined Elliptic Cylinder
,”
J. Fluids Struct.
,
15
(
5
), pp.
691
715
.10.1006/jfls.2000.0372
21.
Raman
,
S.
,
Parakash
,
K.
, and
Vengadesan
,
S.
,
2013
, “
Effect of Axis Ratio on Fluid Flow Around an Elliptic Cylinder—A Numerical Study
,”
ASME J. Fluids Eng.
,
135
(
11
), p.
111201
.10.1115/1.4024862
22.
Lienhard
,
J. H.
, and
Liu
,
L. W.
,
1967
, “
Locked-In Vortex Shedding Behind Oscillating Circular Cylinders, With Application to Transmission Lines
,”
ASME Presented at the Fluids Engineering Conference
,
Chicago, IL
, May 8–11, ASME Paper No. 67-FE-24.
23.
Ganvira
,
V.
,
Gauthama
,
B.
,
Polc
,
H.
,
Bhamlad
,
M.
,
Sclesi
,
L.
,
Thaokarb
,
R.
,
Lelec
,
A.
, and
Mackleye
,
M.
,
2011
, “
Extrudate Swell of Linear and Branched Polyethylenes: ALE Simulations and Comparison With Experiments
,”
J. Non-Newtonian Fluid Mech.
,
166
(
1–2
), pp.
12
24
.10.1016/j.jnnfm.2010.10.001
24.
Huhes
,
T.
,
Liu
,
W.
, and
Zimmermann
,
T.
,
1981
, “
Lagrangian–Eulerian Finite Element Formulation for Incompressible Viscous Flow
,”
Comput. Methods Appl. Mech. Eng.
,
29
(
3
), pp.
329
349
.10.1016/0045-7825(81)90049-9
25.
Pin
,
F.
,
Idelsohn
,
S.
,
Onate
,
E.
, and
Aubry
,
R.
,
2007
, “
The ALE/Lagrangian Finite Element Method: A New Approach to Computation of Free-Surface Flows and Fluid-Object Interactions
,”
Comput. Fluids
,
36
(
1
), pp.
27
38
.10.1016/j.compfluid.2005.06.008
26.
Atkinson
,
K. A.
,
1988
,
An Introduction to Numerical Analysis
, Section 8.9, 2nd ed.,
Wiley
,
Canada
.
27.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere
,
New York
.
28.
AIAA,
1998
, “
Guide for the Verification and Validation of Computational Fluid Dynamics Simulations
,” AIAA Paper No. G-077-1998.
29.
Meneghini
,
J.
,
Saltara
,
F.
, and
Ferrari
,
J.
,
2001
, “
Numerical Simulation of Flow Interference Between Two Circular Cylinders in Tandem and Side-By-Side Arrangement
,”
J. Fluids Struct.
,
15
(
2
), pp.
27
350
.10.1006/jfls.2000.0343
30.
Guilmineau
,
E.
, and
Queutey
,
P.
,
2002
, “
A Numerical Simulation of Vortex Shedding From an Oscillating Circular Cylinder
,”
J. Fluids Struct.
,
16
(
6
), pp.
773
794
.10.1006/jfls.2002.0449
31.
Harichandan
,
A.
, and
Roy
,
A.
,
2010
, “
Numerical Investigation of Low Reynolds Number Flow Past Two and Three Circular Cylinders Using Unstructured Grid CFR Scheme
,”
Int. J. Heat Fluid Flow
,
31
(
2
), pp.
154
171
.10.1016/j.ijheatfluidflow.2010.01.007
32.
Lu
,
L.
,
Qin
,
J.
,
Teng
,
B.
, and
Li
,
Y.
,
2011
, “
Numerical Investigation of Lift Suppression by Feedback Rotary Oscillation of Circular at Low Reynolds Number
,”
Phys. Fluids
,
23
(
3
), p.
033601
.10.1063/1.3560379
33.
Jackson
,
C.
,
1987
, “
A Finite Element Study of the Onset of Vortex Shedding in Flow Past Variously Shaped Bodies
,”
J. Fluid Mech.
,
182
, pp.
23
45
.10.1017/S0022112087002234
34.
Williamson
,
C.
, and
Roshko
,
A.
,
1988
, “
Vortex Formation in the Wake of an Oscillating Cylinder
,”
J. Fluid Struct.
,
2
(
4
), pp.
355
381
.10.1016/S0889-9746(88)90058-8
You do not currently have access to this content.