A robust modified weakly compressible smoothed particle hydrodynamics (WCSPH) method based on a predictive corrective scheme is introduced to model the fluid flows engaged with stationary and moving boundary. In this paper, this model is explained and practically verified in three distinct laminar incompressible flow cases; the first case involves the lid driven cavity flow for two Reynolds numbers 400 and 1000. The second case is a flow generated by a moving block in the initially stationary fluid. The third case is flow around the stationary and transversely oscillating circular cylinder confined in a channel. These results in comparison with the standard benchmarks also confirm the good accuracy of the present solution algorithm.
Issue Section:
Fundamental Issues and Canonical Flows
References
1.
Lucy
, L. B.
, 1997
, “A Numerical Approach to the Testing of the Fission Hypothesis
,” Astron. J.
, 82
, pp. 1013
–1024
.10.1086/1121642.
Gingold
, R. A.
, and Monaghan
, J. J.
, 1977
, “Smoothed Particle Hydrodynamics: Theory and Application to Non-Spherical Stars
,” Mon. Not. R. Astron. Soc.
, 181
, pp. 375
–389
.10.1093/mnras/181.3.3753.
Libersky
, L.
, and Petschek
, A. G.
, 1991
, “Smooth Particle Hydrodynamics With Strength of Materials
,” Lect. Notes Phys.
, 395
, pp. 248
–257
.10.1007/3-540-54960-94.
Monaghan
, J. J.
, and Kocharyan
, A.
, 1995
, “SPH Simulation of Multi-Phase Flow
,” Comput. Phys. Commun.
, 87
(1
), pp. 225
–235
.10.1016/0010-4655(94)00174-Z5.
Muller
, M.
, Schirm
, S.
, and Teschner
, M.
, 2004
, “Interactive Blood Simulation for Virtual Surgery Based on Smoothed Particle Hydrodynamics
,” Technol. Health Care
, 12
(1
), pp. 25
–31
.10.1111/j.1365-2524.2004.00465.x6.
Monaghan
, J. J.
, 1994
, “Simulating Free Surface Flows With SPH
,” J. Comput. Phys.
, 110
(2
), pp. 399
–406
.10.1006/jcph.1994.10347.
Morris
, J. P.
, 2000
, “Simulating Surface Tension With Smoothed Particle Hydrodynamics
,” Int. J. Numer. Meth. Fluids
, 33
(3
), pp. 333
–353
.10.1002/1097-0363(20000615)33:3%3C333::AID-FLD11%3E3.0.CO;2-78.
Cummins
, S.
, and Rudman
, M.
, 1999
, “An SPH Projection Method
,” J. Comput. Phys.
, 152
(1
), pp. 584
–607
.10.1006/jcph.1999.62469.
Shao
, S. D.
, and Lo
, E. Y. M.
, 2003
, “Incompressible SPH Method for Simulating Newtonian and Non-Newtonian Flows With a Free Surface
,” Adv. Water Resour.
, 26
(7
), pp. 787
–800
.10.1016/S0309-1708(03)00030-710.
Koshizuka
, S.
, and Oka
, Y.
, 1996
, “Moving Particle Semi-Implicit Method for Fragmentation of Incompressible Fluid
,” Nucl. Sci. Eng.
, 123
(3
), pp. 421
–434
.11.
Lee
, E. S.
, Moulinec
, C.
, Xu
, R.
, Laurence
, D.
, and Stansby
, P.
, 2008
, “Comparisons of Weakly Compressible and Truly Incompressible Algorithms for the SPH Mesh Free Particle Method
,” J. Comput. Phys.
, 227
(18
), pp. 8417
–8436
.10.1016/j.jcp.2008.06.00512.
Bonet
, J.
, and Lok
, T. S.
, 1999
, “Variational and Momentum Preservation Aspects of Smooth Particle Hydrodynamic Formulation
,” Comput. Methods Appl. Mech. Eng.
, 180
(1–2
), pp. 97
–115
.10.1016/S0045-7825(99)00051-113.
Rodriguez-Paz
, M. X.
, and Bonet
, J.
, 2004
, “A Corrected Smooth Particle Hydrodynamics Method for the Simulation of Debris Flows
,” Numer. Methods Partial Differ. Equations
, 20
(1
), pp. 140
–163
.10.1002/num.1008314.
Shadloo
, M. S.
, Zainali
, A.
, Yildiz
, M.
, and Suleman
, A. R.
, 2012
, “A Robust Weakly Compressible SPH Method and Its Comparison With an Incompressible SPH
,” Int. J. Numer. Methods Eng.
, 89
(8
), pp. 939
–956
.10.1002/nme.326715.
Fatehi
, R.
, and Manzari
, M. T.
, 2011
, “Error Estimation in Smoothed Particle Hydrodynamics and a New Scheme for Second Derivatives
,” Comput. Math. Appl.
, 61
(2
), pp. 482
–498
.10.1016/j.camwa.2010.11.02816.
Fatehi
, R.
, and Manzari
, M. T.
, 2011
, “A Remedy for Numerical Oscillations in Weakly Compressible Smoothed Particle Hydrodynamics
,” Int. J. Numer. Methods Fluids
, 67
(9
), pp. 1100
–1114
.10.1002/fld.240617.
Hu
, X. Y.
, and Adams
, N. A.
, 2007
, “An Incompressible Multi-Phase SPH Method
,” J. Comput. Phys.
, 227
(1
), pp. 264
–278
.10.1016/j.jcp.2007.07.01318.
Hu
, X. Y.
, and Adams
, N. A.
, 2009
, “A Constant-Density Approach for Incompressible Multi-Phase SPH
,” J. Comput. Phys.
, 228
(6
), pp. 2082
–2091
.10.1016/j.jcp.2008.11.02719.
Sadek
, S. H.
, and Yildiz
, M.
, 2013
, “Modeling Die Swell of Second-Order Fluids Using Smoothed Particle Hydrodynamics
,” ASME J. Fluids Eng.
, 135
(5
), p. 051103
.10.1115/1.402364520.
Jiang
, T.
, Ouyang
, J.
, Zhang
, L.
, and Jin-Lian
, R.
, 2012
, “The SPH Approach to the Process of Container Filling Based on Non-Linear Constitutive Models
,” Acta Mech. Sin.
, 28
(2
), pp. 407
–418
.10.1007/s10409-012-0041-721.
Kajtar
, J. B.
, and Monaghan
, J. J.
, 2012
, “On the Swimming of Fish Like Bodies Near Free and Fixed Boundaries
,” Eur. J. Mech. B
, 33
, pp. 1
–13
.10.1016/j.euromechflu.2011.12.00522.
Hashemi
, M. R.
, Fatehi
, R.
, and Manzari
, M. T.
, 2012
, “A Modified SPH Method for Simulating Motion of Rigid Bodies in Newtonian Fluid Flows
,” Int. J. Nonlinear Mech.
, 47
(6
), pp. 626
–638
.10.1016/j.ijnonlinmec.2011.10.00723.
Hashemi
, M. R.
, Fatehi
, R.
, and Manzari
, M. T.
, 2011
, “SPH Simulation of Interacting Solid Bodies Suspended in a Shear Flow of an Oldroyd-B Fluid
,” J. Non-Newton. Fluid
, 166
(21–22
), pp. 1239
–1252
.10.1016/j.jnnfm.2011.08.00224.
Cohen
, R. C. Z.
, Cleary
, P. W.
, and Mason
, B. R.
, 2012
, “Simulations of Dolphin Kick Swimming Using Smoothed Particle Hydrodynamics
,” Hum. Mov. Sci.
, 31
(3
), pp. 604
–619
.10.1016/j.humov.2011.06.00825.
Yang
, J.
, and Stern
, F.
, 2014
, “A Sharp Interface Direct Forcing Immersed Boundary Approach for Fully Resolved Simulations of Particulate Flows
,” ASME J. Fluids Eng.
, 136
(4
), p. 040904
.10.1115/1.402619826.
Raman
, S. K.
, Prakash
, K. A.
, and Vengadesan
, S.
, “Effect of Axis Ratio on Fluid Flow Around an Elliptic Cylinder—A Numerical Study
,” ASME J. Fluids Eng.
, 135
(11
), p. 111201
.10.1115/1.402486227.
Blom
, F. J.
, and Leyland
, P.
, 1998
, “Analysis of Fluid–Structure Interaction by Means of Dynamic Unstructured Meshes
,” ASME J. Fluids Eng.
, 120
(4
), pp. 792
–798
.10.1115/1.282074028.
Lee
, E. S.
, Violeau
, D.
, Laurence
, D.
, Stansby
, P.
, and Moulinec
, C.
, 2007
, “SPHERIC Test Case 6: 2-D Incompressible Flow Around a Moving Square Inside a Rectangular Box
,” SPHERIC 2nd International Workshop
, Madrid, Spain, May 23–25, pp. 37
–41
.29.
Capone
, T.
, Panizzo
, A.
, Cecioni
, C.
, and Darlymple
, A.
, 2007
, “Accuracy and Stability of Numerical Schemes in SPH
,” 2nd SPHERIC International Workshop
, A. J. C.
Crespo
, M.
Gomez-Gesteira
, A.
Souto-Iglesias
, L.
Delorme
, and J. M.
Grassa
, eds., Madrid, Spain, May 23–25, pp. 156
–160
.30.
Morris
, J. P.
, Fox
, P. J.
, and Zhu
, Y.
, 1997
, “Modeling Low Reynolds Number Incompressible Flows Using SPH
,” J. Comput. Phys.
, 136
(1
), pp. 214
–226
.10.1006/jcph.1997.577631.
Xu
, R.
, Stansby
, P.
, and Laurence
, D.
, 2009
, “Accuracy and Stability in Incompressible SPH (ISPH) Based on the Projection Method and a New Approach
,” J. Comput. Phys.
, 228
(18
), pp. 6703
–6725
.10.1016/j.jcp.2009.05.03232.
Ma
, J.
, Ge
, W.
, Wang
, X.
, Wang
, J.
, and Li
, J.
, 2006
, “High-Resolution Simulation of Gas–Solid Suspension Using Macro-Scale Particle Methods
,” Chem. Eng. Sci.
, 61
(21
), pp. 7096
–7106
.10.1016/j.ces.2006.07.04233.
Xiong
, Q.
, Li
, B.
, Chen
, F.
, Ma
, J.
, Ge
, W.
, and Li
, J.
, 2010
, “Direct Numerical Simulation of Sub-Grid Structures in Gas–Solid Flow-GPU Implementation of Macro-Scale Pseudo-Particle Modeling
,” Chem. Eng. Sci.
, 65
(19
), pp. 5356
–5365
.10.1016/j.ces.2010.06.03534.
Ghia
, U.
, Ghia
, K. N.
, and Shin
, C. T.
, 1982
, “High-Resolutions for Incompressible Flow Using the Navier–Stokes Equations and a Multigrid Method
,” J. Comput. Phys.
, 48
(3
), pp. 387
–411
.10.1016/0021-9991(82)90058-435.
Nestor
, R.
, Basa
, M.
, and Quinlan
, N.
, 2008
, “Moving Boundary Problems in the Finite Volume Particle Method
,” 3rd ERCOFTAC SPHERIC Workshop on SPH Applications, Lausanne, Switzerland, June 4–6, pp. 109
–114
.36.
Shadloo
, M. S.
, Zainali
, A.
, Sadek
, S. H.
, and Yildiz
, M.
, 2011
, “Improved Incompressible Smoothed Particle Hydrodynamics Method for Simulating Flow Around Bluff Bodies
,” Comput. Methods Appl. Mech. Eng.
, 200
(9–12
), pp. 1008
–1020
.10.1016/j.cma.2010.12.00237.
Ozalp
, A. A.
, and Dincer
, I.
, 2010
, “Laminar Boundary Layer Development Around a Circular Cylinder: Fluid Flow and Heat-Mass Transfer Characteristics
,” ASME J. Heat. Transfer
, 132
(12
), p. 121703
.10.1115/1.400228838.
Celik
, B.
, Raisee
, M.
, and Beskok
, A.
, 2010
, “Heat Transfer Enhancement in a Slot Channel Via a Transversely Oscillating Adiabatic Circular Cylinder
,” Int. J. Heat Mass Transfer
, 53
(4
), pp. 626
–634
.10.1016/j.ijheatmasstransfer.2009.10.034Copyright © 2015 by ASME
You do not currently have access to this content.