A robust modified weakly compressible smoothed particle hydrodynamics (WCSPH) method based on a predictive corrective scheme is introduced to model the fluid flows engaged with stationary and moving boundary. In this paper, this model is explained and practically verified in three distinct laminar incompressible flow cases; the first case involves the lid driven cavity flow for two Reynolds numbers 400 and 1000. The second case is a flow generated by a moving block in the initially stationary fluid. The third case is flow around the stationary and transversely oscillating circular cylinder confined in a channel. These results in comparison with the standard benchmarks also confirm the good accuracy of the present solution algorithm.

References

1.
Lucy
,
L. B.
,
1997
, “
A Numerical Approach to the Testing of the Fission Hypothesis
,”
Astron. J.
,
82
, pp.
1013
1024
.10.1086/112164
2.
Gingold
,
R. A.
, and
Monaghan
,
J. J.
,
1977
, “
Smoothed Particle Hydrodynamics: Theory and Application to Non-Spherical Stars
,”
Mon. Not. R. Astron. Soc.
,
181
, pp.
375
389
.10.1093/mnras/181.3.375
3.
Libersky
,
L.
, and
Petschek
,
A. G.
,
1991
, “
Smooth Particle Hydrodynamics With Strength of Materials
,”
Lect. Notes Phys.
,
395
, pp.
248
257
.10.1007/3-540-54960-9
4.
Monaghan
,
J. J.
, and
Kocharyan
,
A.
,
1995
, “
SPH Simulation of Multi-Phase Flow
,”
Comput. Phys. Commun.
,
87
(
1
), pp.
225
235
.10.1016/0010-4655(94)00174-Z
5.
Muller
,
M.
,
Schirm
,
S.
, and
Teschner
,
M.
,
2004
, “
Interactive Blood Simulation for Virtual Surgery Based on Smoothed Particle Hydrodynamics
,”
Technol. Health Care
,
12
(
1
), pp.
25
31
.10.1111/j.1365-2524.2004.00465.x
6.
Monaghan
,
J. J.
,
1994
, “
Simulating Free Surface Flows With SPH
,”
J. Comput. Phys.
,
110
(
2
), pp.
399
406
.10.1006/jcph.1994.1034
7.
Morris
,
J. P.
,
2000
, “
Simulating Surface Tension With Smoothed Particle Hydrodynamics
,”
Int. J. Numer. Meth. Fluids
,
33
(
3
), pp.
333
353
.10.1002/1097-0363(20000615)33:3%3C333::AID-FLD11%3E3.0.CO;2-7
8.
Cummins
,
S.
, and
Rudman
,
M.
,
1999
, “
An SPH Projection Method
,”
J. Comput. Phys.
,
152
(
1
), pp.
584
607
.10.1006/jcph.1999.6246
9.
Shao
,
S. D.
, and
Lo
,
E. Y. M.
,
2003
, “
Incompressible SPH Method for Simulating Newtonian and Non-Newtonian Flows With a Free Surface
,”
Adv. Water Resour.
,
26
(
7
), pp.
787
800
.10.1016/S0309-1708(03)00030-7
10.
Koshizuka
,
S.
, and
Oka
,
Y.
,
1996
, “
Moving Particle Semi-Implicit Method for Fragmentation of Incompressible Fluid
,”
Nucl. Sci. Eng.
,
123
(
3
), pp.
421
434
.
11.
Lee
,
E. S.
,
Moulinec
,
C.
,
Xu
,
R.
,
Laurence
,
D.
, and
Stansby
,
P.
,
2008
, “
Comparisons of Weakly Compressible and Truly Incompressible Algorithms for the SPH Mesh Free Particle Method
,”
J. Comput. Phys.
,
227
(
18
), pp.
8417
8436
.10.1016/j.jcp.2008.06.005
12.
Bonet
,
J.
, and
Lok
,
T. S.
,
1999
, “
Variational and Momentum Preservation Aspects of Smooth Particle Hydrodynamic Formulation
,”
Comput. Methods Appl. Mech. Eng.
,
180
(
1–2
), pp.
97
115
.10.1016/S0045-7825(99)00051-1
13.
Rodriguez-Paz
,
M. X.
, and
Bonet
,
J.
,
2004
, “
A Corrected Smooth Particle Hydrodynamics Method for the Simulation of Debris Flows
,”
Numer. Methods Partial Differ. Equations
,
20
(
1
), pp.
140
163
.10.1002/num.10083
14.
Shadloo
,
M. S.
,
Zainali
,
A.
,
Yildiz
,
M.
, and
Suleman
,
A. R.
,
2012
, “
A Robust Weakly Compressible SPH Method and Its Comparison With an Incompressible SPH
,”
Int. J. Numer. Methods Eng.
,
89
(
8
), pp.
939
956
.10.1002/nme.3267
15.
Fatehi
,
R.
, and
Manzari
,
M. T.
,
2011
, “
Error Estimation in Smoothed Particle Hydrodynamics and a New Scheme for Second Derivatives
,”
Comput. Math. Appl.
,
61
(
2
), pp.
482
498
.10.1016/j.camwa.2010.11.028
16.
Fatehi
,
R.
, and
Manzari
,
M. T.
,
2011
, “
A Remedy for Numerical Oscillations in Weakly Compressible Smoothed Particle Hydrodynamics
,”
Int. J. Numer. Methods Fluids
,
67
(
9
), pp.
1100
1114
.10.1002/fld.2406
17.
Hu
,
X. Y.
, and
Adams
,
N. A.
,
2007
, “
An Incompressible Multi-Phase SPH Method
,”
J. Comput. Phys.
,
227
(
1
), pp.
264
278
.10.1016/j.jcp.2007.07.013
18.
Hu
,
X. Y.
, and
Adams
,
N. A.
,
2009
, “
A Constant-Density Approach for Incompressible Multi-Phase SPH
,”
J. Comput. Phys.
,
228
(
6
), pp.
2082
2091
.10.1016/j.jcp.2008.11.027
19.
Sadek
,
S. H.
, and
Yildiz
,
M.
,
2013
, “
Modeling Die Swell of Second-Order Fluids Using Smoothed Particle Hydrodynamics
,”
ASME J. Fluids Eng.
,
135
(
5
), p.
051103
.10.1115/1.4023645
20.
Jiang
,
T.
,
Ouyang
,
J.
,
Zhang
,
L.
, and
Jin-Lian
,
R.
,
2012
, “
The SPH Approach to the Process of Container Filling Based on Non-Linear Constitutive Models
,”
Acta Mech. Sin.
,
28
(
2
), pp.
407
418
.10.1007/s10409-012-0041-7
21.
Kajtar
,
J. B.
, and
Monaghan
,
J. J.
,
2012
, “
On the Swimming of Fish Like Bodies Near Free and Fixed Boundaries
,”
Eur. J. Mech. B
,
33
, pp.
1
13
.10.1016/j.euromechflu.2011.12.005
22.
Hashemi
,
M. R.
,
Fatehi
,
R.
, and
Manzari
,
M. T.
,
2012
, “
A Modified SPH Method for Simulating Motion of Rigid Bodies in Newtonian Fluid Flows
,”
Int. J. Nonlinear Mech.
,
47
(
6
), pp.
626
638
.10.1016/j.ijnonlinmec.2011.10.007
23.
Hashemi
,
M. R.
,
Fatehi
,
R.
, and
Manzari
,
M. T.
,
2011
, “
SPH Simulation of Interacting Solid Bodies Suspended in a Shear Flow of an Oldroyd-B Fluid
,”
J. Non-Newton. Fluid
,
166
(
21–22
), pp.
1239
1252
.10.1016/j.jnnfm.2011.08.002
24.
Cohen
,
R. C. Z.
,
Cleary
,
P. W.
, and
Mason
,
B. R.
,
2012
, “
Simulations of Dolphin Kick Swimming Using Smoothed Particle Hydrodynamics
,”
Hum. Mov. Sci.
,
31
(
3
), pp.
604
619
.10.1016/j.humov.2011.06.008
25.
Yang
,
J.
, and
Stern
,
F.
,
2014
, “
A Sharp Interface Direct Forcing Immersed Boundary Approach for Fully Resolved Simulations of Particulate Flows
,”
ASME J. Fluids Eng.
,
136
(
4
), p.
040904
.10.1115/1.4026198
26.
Raman
,
S. K.
,
Prakash
,
K. A.
, and
Vengadesan
,
S.
, “
Effect of Axis Ratio on Fluid Flow Around an Elliptic Cylinder—A Numerical Study
,”
ASME J. Fluids Eng.
,
135
(
11
), p.
111201
.10.1115/1.4024862
27.
Blom
,
F. J.
, and
Leyland
,
P.
,
1998
, “
Analysis of Fluid–Structure Interaction by Means of Dynamic Unstructured Meshes
,”
ASME J. Fluids Eng.
,
120
(
4
), pp.
792
798
.10.1115/1.2820740
28.
Lee
,
E. S.
,
Violeau
,
D.
,
Laurence
,
D.
,
Stansby
,
P.
, and
Moulinec
,
C.
,
2007
, “
SPHERIC Test Case 6: 2-D Incompressible Flow Around a Moving Square Inside a Rectangular Box
,”
SPHERIC 2nd International Workshop
, Madrid, Spain, May 23–25, pp.
37
41
.
29.
Capone
,
T.
,
Panizzo
,
A.
,
Cecioni
,
C.
, and
Darlymple
,
A.
,
2007
, “
Accuracy and Stability of Numerical Schemes in SPH
,”
2nd SPHERIC International Workshop
,
A. J. C.
Crespo
,
M.
Gomez-Gesteira
,
A.
Souto-Iglesias
,
L.
Delorme
, and
J. M.
Grassa
, eds., Madrid, Spain, May 23–25, pp.
156
160
.
30.
Morris
,
J. P.
,
Fox
,
P. J.
, and
Zhu
,
Y.
,
1997
, “
Modeling Low Reynolds Number Incompressible Flows Using SPH
,”
J. Comput. Phys.
,
136
(
1
), pp.
214
226
.10.1006/jcph.1997.5776
31.
Xu
,
R.
,
Stansby
,
P.
, and
Laurence
,
D.
,
2009
, “
Accuracy and Stability in Incompressible SPH (ISPH) Based on the Projection Method and a New Approach
,”
J. Comput. Phys.
,
228
(
18
), pp.
6703
6725
.10.1016/j.jcp.2009.05.032
32.
Ma
,
J.
,
Ge
,
W.
,
Wang
,
X.
,
Wang
,
J.
, and
Li
,
J.
,
2006
, “
High-Resolution Simulation of Gas–Solid Suspension Using Macro-Scale Particle Methods
,”
Chem. Eng. Sci.
,
61
(
21
), pp.
7096
7106
.10.1016/j.ces.2006.07.042
33.
Xiong
,
Q.
,
Li
,
B.
,
Chen
,
F.
,
Ma
,
J.
,
Ge
,
W.
, and
Li
,
J.
,
2010
, “
Direct Numerical Simulation of Sub-Grid Structures in Gas–Solid Flow-GPU Implementation of Macro-Scale Pseudo-Particle Modeling
,”
Chem. Eng. Sci.
,
65
(
19
), pp.
5356
5365
.10.1016/j.ces.2010.06.035
34.
Ghia
,
U.
,
Ghia
,
K. N.
, and
Shin
,
C. T.
,
1982
, “
High-Resolutions for Incompressible Flow Using the Navier–Stokes Equations and a Multigrid Method
,”
J. Comput. Phys.
,
48
(
3
), pp.
387
411
.10.1016/0021-9991(82)90058-4
35.
Nestor
,
R.
,
Basa
,
M.
, and
Quinlan
,
N.
,
2008
, “
Moving Boundary Problems in the Finite Volume Particle Method
,” 3rd ERCOFTAC SPHERIC Workshop on SPH Applications, Lausanne, Switzerland, June 4–6, pp.
109
114
.
36.
Shadloo
,
M. S.
,
Zainali
,
A.
,
Sadek
,
S. H.
, and
Yildiz
,
M.
,
2011
, “
Improved Incompressible Smoothed Particle Hydrodynamics Method for Simulating Flow Around Bluff Bodies
,”
Comput. Methods Appl. Mech. Eng.
,
200
(
9–12
), pp.
1008
1020
.10.1016/j.cma.2010.12.002
37.
Ozalp
,
A. A.
, and
Dincer
,
I.
,
2010
, “
Laminar Boundary Layer Development Around a Circular Cylinder: Fluid Flow and Heat-Mass Transfer Characteristics
,”
ASME J. Heat. Transfer
,
132
(
12
), p.
121703
.10.1115/1.4002288
38.
Celik
,
B.
,
Raisee
,
M.
, and
Beskok
,
A.
,
2010
, “
Heat Transfer Enhancement in a Slot Channel Via a Transversely Oscillating Adiabatic Circular Cylinder
,”
Int. J. Heat Mass Transfer
,
53
(
4
), pp.
626
634
.10.1016/j.ijheatmasstransfer.2009.10.034
You do not currently have access to this content.