Abstract

An experimental investigation was performed to characterize the influence of pump rotation speed on the hydrodynamic performance and the associated unsteady pressure on the stator blade pressure-surface in a torque converter. High-resolution miniature transducers were used to obtain the signature of the pressure pulsation at specific surface locations. Results show that the increase of the pump rotation speed can enhance the torque capacity of the stator, leading to a higher torque ratio in the low speed ratio range and an improvement of the highest transmission efficiency. The efficiency increase rate starts to reduce at approximately SR = 0.4, corresponding to where the stator capacity reaches the maximum and exhibits a uniform distribution of the pressure pulsation intensity. The spectral decomposition of the pulsating pressure reveals the existence of two dominating frequencies, which corresponds to the upstream pump turbine interaction and the downstream pump blade passing. Higher pump speeds enhance the pump turbine interaction and results in a more regular pressure pulsation, improving the hydrodynamic performance of the torque converter.

References

References
1.
Liu
,
C.
,
Untaroiu
,
A.
,
Wood
,
H. G.
,
Yan
,
Q.
, and
Wei
,
W.
,
2015
, “
Parametric Analysis and Optimization of Inlet Inflection Angle in Torque Converters
,”
ASME J. Fluids Eng.
,
137
(
3
), p.
031101
.10.1115/1.4028596
2.
Chen
,
J.
, and
Wu
,
G.
,
2018
, “
Kriging-Assisted Design Optimization of the Impeller Geometry for an Automotive Torque Converter
,”
Struct. Multidiscip. Optim.
,
57
(
6
), pp.
2503
2514
.10.1007/s00158-017-1857-3
3.
Flack
,
R. D.
,
2005
, “
Experimental Flow Fields in an Automotive Torque Converter—An Invited Summary and Review Paper
,”
Int. J. Veh. Des.
,
38
(
2/3
), pp.
240
258
.10.1504/IJVD.2005.007297
4.
Gruver
,
J. K.
,
Flack
,
R. D.
, and
Brun
,
K.
,
1996
, “
Laser Velocimeter Measurements in the Pump of an Automotive Torque Converter: Part I—Average Measurements
,”
ASME J. Turbomach.
,
118
(
3
), pp.
562
569
.10.1115/1.2836703
5.
Ejiri
,
E.
, and
Kubo
,
M.
,
1999
, “
Performance Analysis of Automotive Torque Converter Elements
,”
ASME J. Fluids Eng.
,
121
(
2
), pp.
266
275
.10.1115/1.2822201
6.
Ejiri
,
E.
, and
Kubo
,
M.
,
1999
, “
Influence of the Flatness Ratio of an Automotive Torque Converter on Hydrodynamic Performance
,”
ASME J. Fluids Eng.
,
121
(
3
), pp.
614
620
.10.1115/1.2823513
7.
Dong
,
Y.
,
Korivi
,
V.
,
Attibele
,
P.
, and
Yuan
,
Y.
,
2002
, “
Torque Converter CFD Engineering—Part I: Torque Ratio and K Factor Improvement Through Stator Modifications
,”
SAE
Paper No. 2002-01-0883.10.4271/2002-01-0883
8.
Liu
,
B.
,
Yan
,
Q.
, and
Wei
,
W.
,
2018
, “
Numerical Investigations of the Flow Induced Oscillation of a Torque Converter
,”
Eng. Appl. Comp. Fluid Mech.
,
12
(
1
), pp.
270
281
.10.1080/19942060.2017.1419149
9.
Browarzik
,
V.
,
1994
, “
Experimental Investigation of Rotor/Rotor Interaction in a Hydrodynamic Torque Converter Using Hot-Film Anemometry
,”
ASME
Paper No. 94-GT-246.10.1115/94-GT-246
10.
Dong
,
Y.
,
Lakshminarayana
,
B.
, and
Maddock
,
D.
,
1998
, “
Steady and Unsteady Flow Field at Pump and Turbine Exits of a Torque Converter
,”
ASME J. Fluids Eng.
,
120
(
3
), pp.
538
548
.10.1115/1.2820696
11.
By
,
R.
, and
Lakshminarayana
,
B.
,
1991
, “
Static Pressure Measurement in a Torque Converter Stater
,”
SAE
Paper No. 911934.10.4271/911934
12.
Marathe
,
B. V.
,
Lakshminarayana
,
B.
, and
Maddock
,
D. G.
,
1997
, “
Experimental Investigation of Steady and Unsteady Flow Field Downstream of an Automotive Torque Converter Turbine and Inside the Stator: Part II—Unsteady Pressure on the Stator Blade Surface
,”
ASME J. Turbomach.
,
119
(
3
), pp.
634
645
.10.1115/1.2841169
13.
Kraus
,
S. O.
,
Flack
,
R.
,
Habsieger
,
A.
,
Gillies
,
G. T.
, and
Dullenkopf
,
K.
,
2005
, “
Periodic Velocity Measurements in a Wide and Large Radius Ratio Automotive Torque Converter at the Pump/Turbine Interface
,”
ASME J. Fluids Eng.
,
127
(
2
), pp.
19
32
.10.1115/1.1891150
14.
Anup
,
K. C.
,
Thapa
,
B.
, and
Lee
,
Y. H.
,
2014
, “
Transient Numerical Analysis of Rotor-Stator Interaction in a Francis Turbine
,”
Renew. Energy
,
65
, pp.
227
235
.10.1016/j.renene.2013.09.013
15.
Rodriguez
,
C.
,
Egusquiza
,
E.
, and
Santos
,
I.
,
2007
, “
Frequencies in the Vibration Induced by the Rotor Stator Interaction in a Centrifugal Pump Turbine
,”
ASME J. Fluids Eng.
,
129
(
11
), pp.
1428
1435
.10.1115/1.2786489
16.
Singh
,
S.
,
Choi
,
J.
, and
Chahine
,
G. L.
,
2013
, “
Characterization of Cavitation Fields From Measured Pressure Signals of Cavitating Jets and Ultrasonic Horns
,”
ASME J. Fluids Eng.
,
135
(
9
), p.
091302
.10.1115/1.4024263
17.
Kaupert
,
K. A.
, and
Staubli
,
T.
,
1999
, “
The Unsteady Pressure Field in a High Specific Speed Centrifugal Pump Impeller—Part I: Influence of the Volute
,”
ASME J. Fluids Eng.
,
121
(
3
), pp.
621
626
.10.1115/1.2823514
18.
Anderson
,
C. L.
,
Zeng
,
L.
,
Sweger
,
P. O.
,
Narain
,
A.
, and
Blough
,
J. R.
,
2003
, “
Experimental Investigation of Cavitation Signatures in an Automotive Torque Converter Using a Microwave Telemetry Technique
,”
Int. J. Rotating Mach.
,
9
(
6
), pp.
403
410
.10.1155/S1023621X03000381
19.
Flack
,
R.
, and
Brun
,
K.
,
2005
, “
Fundamental Analysis of the Secondary Flows and Jet-Wake in a Torque Converter Pump—Part I: Model and Flow in a Rotating Passage
,”
ASME J. Fluids Eng.
,
127
(
1
), pp.
66
74
.10.1115/1.1852485
20.
By
,
R. R.
, and
Lakshminarayana
,
B.
,
1995
, “
Measurement and Analysis of Static Pressure Field in a Torque Converter Pump
,”
ASME J. Fluids Eng.
,
117
(
1
), pp.
109
115
.10.1115/1.2816798
21.
Shin
,
S.
,
Chang
,
H.
, and
Athavale
,
M.
,
1999
, “
Numerical Investigation of the Pump Flow in an Automotive Torque Converter
,”
SAE
Paper No. 1999-01-1056.10.4271/1999-01-1056
22.
Watanabe
,
H.
,
1996
, “
Flow Visualization and Measurement in the Stator of a  Torque Converter
,”
JSAE Rev.
,
17
(
1
), pp.
25
30
.10.1016/0389-4304(95)00058-5
23.
Liu
,
Y.
, and
Tan
,
L.
,
2018
, “
Tip Clearance on Pressure Fluctuation Intensity and Vortex Characteristic of a Mixed Flow Pump as Turbine at Pump Mode
,”
Renew. Energy
,
129
(
Part A
), pp.
606
615
.10.1016/j.renene.2018.06.032
24.
Flack
,
R. D.
, and
Whitehead
,
L. D.
,
1999
, “
Velocity Measurements in an Automotive Torque Converter—Part II: Average Turbine and Stator Measurements
,”
Tribol. Trans.
,
42
(
4
), pp.
697
706
.10.1080/10402009908982272
25.
Ainley
,
S. B.
, and
Flack
,
R. D.
,
2000
, “
Laser Velocimeter Measurements in the Stator of an Automotive Torque Converter
,”
Int. J. Rotating Mach.
,
6
(
6
), pp.
417
431
.10.1155/S1023621X00000385
26.
Kunisaki
,
Y.
,
Kobayashi
,
T.
,
Saga
,
T.
,
Taniguchi
,
N.
, and
Tasaka
,
T.
,
2001
, “
A Study on Internal Flow Field of Automotive Torque Converter—Three-Dimensional Flow Analysis Around a Stator Cascade of Automotive Torque Converter by Using PIV and CT Techniques
,”
JSAE Rev.
,
22
(
4
), pp.
559
564
.10.1016/S0389-4304(01)00132-1
27.
Li
,
D.
,
Gong
,
R.
,
Wang
,
H.
,
Wei
,
X.
,
Liu
,
Z.
, and
Qin
,
D.
,
2015
, “
Numerical Investigation on Transient Flow of a High Head Low Specific Speed Pump-Turbine in Pump Mode
,”
J. Renewable Sustainable Energy
,
7
(
6
), p.
063111
.10.1063/1.4936419
28.
Chen
,
X.
, and
Feng
,
Z.
,
2016
, “
Iterative Generalized Time–Frequency Reassignment for Planetary Gearbox Fault Diagnosis Under Nonstationary Conditions
,”
Mech. Syst. Signal Proc.
,
80
, pp.
429
444
.10.1016/j.ymssp.2016.04.023
29.
Widmer
,
C.
,
Staubli
,
T.
, and
Ledergerber
,
N.
,
2011
, “
Unstable Characteristics and Rotating Stall in Turbine Brake Operation of Pump-Turbines
,”
ASME J. Fluids Eng.
,
133
(
4
), p.
041101
.10.1115/1.4003874
You do not currently have access to this content.