Abstract

Reynolds-averaged modeling is performed for polymer-induced drag reduction (DR) fluid at the fully developed turbulent regime in a concentric annulus by using the commercial code, ansys-fluent. The numerical approach adopted in this study relies on a modified k–εv2¯–f model to characterize the turbulence and the finitely extensible nonlinear elastic-Peterlin (FENE-P) constitutive model to represent the rheological behavior of the polymer solution. The near-wall axial velocity, Reynolds stress, and turbulent kinetic energy (TKE) budget near both walls of the annulus (fixed radius ratio of 0.4) are compared in detail at a constant Reynolds number (Re=10,587) and various rheological parameters (Weissenberg number We in the range of 1–7 and the maximum polymer elongation L = 30 and 100). Current simulation has predicted the redistributions of turbulent statistics in the annulus, where the two turbulent boundary layers (TBLs) of the DR flow differ more compared to those of its Newtonian counterpart. The difference is also found to be highly dependent on the rheological properties of the viscoelastic fluid.

References

References
1.
Toms
,
B. A.
,
1943
, “
Some Observations on the Flow of Linear Polymer Solutions Through Straight Tubes at Large Reynolds Numbers
,”
Proceedings of the First International Congress on Rheology, North-Holland, Amsterdam
,
The Netherlands
, Sept. 12–24, pp.
135
141
2.
Virk
,
P. S.
,
Merrill
,
E.
,
Mickley
,
H.
,
Smith
,
K.
, and
Mollo-Christensen
,
E.
,
1967
, “
The Toms Phenomenon: Turbulent Pipe Flow of Dilute Polymer Solutions
,”
J. Fluid Mech.
,
30
(
2
), pp.
305
328
.10.1017/S0022112067001442
3.
Virk
,
P.
,
1971
, “
An Elastic Sublayer Model for Drag Reduction by Dilute Solutions of Linear Macromolecules
,”
J. Fluid Mech.
,
45
(
3
), pp.
417
440
.10.1017/S0022112071000120
4.
Gennes
,
P. G. D.
,
1990
,
Introduction to Polymer Dynamics
,
Cambridge University Press
,
Cambridge, UK
.
5.
Lumley
,
J. L.
,
1969
, “
Drag Reduction by Additives
,”
Annu. Rev. Fluid Mech.
,
1
(
1
), pp.
367
384
.10.1146/annurev.fl.01.010169.002055
6.
Lumley
,
J. L.
,
1973
, “
Drag Reduction in Turbulent Flow by Polymer Additives
,”
J. Polym. Sci., Part D
,
7
(
1
), pp.
263
290
.10.1002/pol.1973.230070104
7.
Ptasinski
,
P.
,
Boersma
,
B.
,
Nieuwstadt
,
F.
,
Hulsen
,
M.
,
Van den Brule
,
B.
, and
Hunt
,
J.
,
2003
, “
Turbulent Channel Flow Near Maximum Drag Reduction: Simulations, Experiments and Mechanisms
,”
J. Fluid Mech.
,
490
, pp.
251
291
.10.1017/S0022112003005305
8.
Masoudian
,
M.
,
Kim
,
K.
,
Pinho
,
F.
, and
Sureshkumar
,
R.
,
2013
, “
A Viscoelastic Turbulent Flow Model Valid Up to the Maximum Drag Reduction Limit
,”
J. Non-Newtonian Fluid Mech.
,
202
, pp.
99
111
.10.1016/j.jnnfm.2013.09.007
9.
Pinho
,
F.
,
Li
,
C.
,
Younis
,
B.
, and
Sureshkumar
,
R.
,
2008
, “
A Low Reynolds Number Turbulence Closure for Viscoelastic Fluids
,”
J. Non-Newtonian Fluid Mech.
,
154
(
2–3
), pp.
89
108
.10.1016/j.jnnfm.2008.02.008
10.
Poreh
,
M.
, and
Hassid
,
S.
,
1977
, “
Mean Velocity and Turbulent Energy Closures for Flows With Drag Reduction
,”
Phys. Fluids
,
20
(
10
), pp.
S193
S196
.10.1063/1.861729
11.
Bird
,
R.
,
Dotson
,
P.
, and
Johnson
,
N.
,
1980
, “
Polymer Solution Rheology Based on a Finitely Extensible Bead-Spring Chain Model
,”
J. Non-Newtonian Fluid Mech.
,
7
(
2–3
), pp.
213
235
.10.1016/0377-0257(80)85007-5
12.
Resende
,
P.
,
Kim
,
K.
,
Younis
,
B.
,
Sureshkumar
,
R.
, and
Pinho
,
F.
,
2011
, “
A FENE-P k–ε Turbulence Model for Low and Intermediate Regimes of Polymer-Induced Drag Reduction
,”
J. Non-Newtonian Fluid Mech.
,
166
(
12–13
), pp.
639
660
.10.1016/j.jnnfm.2011.02.012
13.
Iaccarino
,
G.
,
Shaqfeh
,
E. S.
, and
Dubief
,
Y.
,
2010
, “
Reynolds-Averaged Modeling of Polymer Drag Reduction in Turbulent Flows
,”
J. Non-Newtonian Fluid Mech.
,
165
(
7–8
), pp.
376
384
.10.1016/j.jnnfm.2010.01.013
14.
Durbin
,
P. A.
,
1995
, “
Separated Flow Computations With the k- ε-v2 Model
,”
AIAA J.
,
33
(
4
), pp.
659
664
.10.2514/3.12628
15.
Masoudian
,
M.
,
Pinho
,
F.
,
Kim
,
K.
, and
Sureshkumar
,
R.
,
2016
, “
A RANS Model for Heat Transfer Reduction in Viscoelastic Turbulent Flow
,”
Int. J. Heat Mass Transfer
,
100
, pp.
332
346
.10.1016/j.ijheatmasstransfer.2016.04.053
16.
Nouri
,
J.
,
Umur
,
H.
, and
Whitelaw
,
J.
,
1993
, “
Flow of Newtonian and Non-Newtonian Fluids in Concentric and Eccentric Annuli
,”
J. Fluid Mech.
,
253
(
1
), pp.
617
641
.10.1017/S0022112093001922
17.
Xiong
,
X.
,
Rahman
,
M. A.
, and
Zhang
,
Y.
,
2016
, “
RANS Based Computational Fluid Dynamics Simulation of Fully Developed Turbulent Newtonian Flow in Concentric Annuli
,”
ASME J. Fluids Eng.
,
138
(
9
), p.
091202
.10.1115/1.4033314
18.
Cadot
,
O.
,
Bonn
,
D.
, and
Douady
,
S.
,
1998
, “
Turbulent Drag Reduction in a Closed Flow System: Boundary Layer Versus Bulk Effects
,”
Phys. Fluids
,
10
(
2
), pp.
426
436
.10.1063/1.869532
19.
Min
,
T.
,
Yoo
,
J. Y.
,
Choi
,
H.
, and
Joseph
,
D. D.
,
2003
, “
Drag Reduction by Polymer Additives in a Turbulent Channel Flow
,”
J. Fluid Mech.
,
486
, pp.
213
238
.10.1017/S0022112003004610
20.
Li
,
C.-F.
,
Sureshkumar
,
R.
, and
Khomami
,
B.
,
2006
, “
Influence of Rheological Parameters on Polymer Induced Turbulent Drag Reduction
,”
J. Non-Newtonian Fluid Mech.
,
140
(
1–3
), pp.
23
40
.10.1016/j.jnnfm.2005.12.012
21.
Li
,
C.
,
Gupta
,
V.
,
Sureshkumar
,
R.
, and
Khomami
,
B.
,
2006
, “
Turbulent Channel Flow of Dilute Polymeric Solutions: Drag Reduction Scaling and an Eddy Viscosity Model
,”
J. Non-Newtonian Fluid Mech.
,
139
(
3
), pp.
177
189
.10.1016/j.jnnfm.2006.04.012
22.
Durbin
,
P. A.
,
1991
, “
Near-Wall Turbulence Closure Modeling  Without Damping Functions
,”
Theor. Comput. Fluid Dyn.
,
3
(
1
), pp.
1
13
.10.1007/BF00271513
23.
Lien
,
F.
, and
Durbin
,
P.
,
1996
, “
Non-Linear k–ε-v2 Modelling With Application to High-Lift
,”
Proceedings of the 1996 Summer Programme
of the Centre for Turbulence Research, Standford University, Stanford,CA, pp.
5
22
24.
Dubief
,
Y.
,
White
,
C. M.
,
Terrapon
,
V. E.
,
Shaqfeh
,
E. S.
,
Moin
,
P.
, and
Lele
,
S. K.
,
2004
, “
On the Coherent Drag-Reducing and Turbulence-Enhancing Behaviour of Polymers in Wall Flows
,”
J. Fluid Mech.
,
514
, pp.
271
280
.10.1017/S0022112004000291
25.
Rodriguez-Corredor
,
F.
,
Bizhani
,
M.
,
Ashrafuzzaman
,
M.
, and
Kuru
,
E.
,
2014
, “
An Experimental Investigation of Turbulent Water Flow in Concentric Annulus Using Particle Image Velocimetry Technique
,”
ASME J. Fluids Eng.
,
136
(
5
), p.
051203
.10.1115/1.4026136
26.
Zheng
,
Z.-Y.
,
Li
,
F.-C.
, and
Li
,
Q.
,
2014
, “
Reynolds-Averaged Simulation on Turbulent Drag-Reducing Flows of Viscoelastic Fluid Based on User-Defined Function in FLUENT Package
,”
ASME
Paper No. FEDSM2014-21327.
10.1115/FEDSM2014-21327
27.
Von Kármán
,
T.
,
1931
, “
Mechanical Similitude and Turbulence
,” Technical Memorandum, NASA, Washington, DC, Report No. 611. 
28.
Chung
,
S. Y.
,
Rhee
,
G. H.
, and
Sung
,
H. J.
,
2002
, “
Direct Numerical Simulation of Turbulent Concentric Annular Pipe Flow—Part 1: Flow Field
,”
Int. J. Heat Fluid Flow
,
23
(
4
), pp.
426
440
.10.1016/S0142-727X(02)00140-6
29.
Liu
,
N. S.
, and
Lu
,
X. Y.
,
2004
, “
Large Eddy Simulation of Turbulent Concentric Annular Channel Flows
,”
Int. J. Numer. Methods Fluids
,
45
(
12
), pp.
1317
1338
.10.1002/fld.740
You do not currently have access to this content.