Abstract

Compared to conventional globe valves, the pilot-control globe valve (PCGV) possesses advantages of lower energy consumption and higher space utilization. In order to analyze the effects of pilot pipe and damping orifice arrangements, this work proposes four PCGVs and conducts simulations to compare their overall performances, overall flow characteristics, and local flow characteristics around the valve core. In general, the arrangement of the pilot pipe has larger effects on the hydroperformances of PCGVs than the arrangement of the damping orifice. The pipe-parallel-mounted type PCGV performs better in hydroperformance than the pipe-perpendicular-mounted type PCGV, and thus is recommended in practice. As the specified valve core travel increases, the flow resistance of PCGVs decreases and the flow capacity of PCGVs increases. However, overlarge specified valve core travel has little effects on the flow resistance and flow capacity of PCGVs. Besides, the increased specified valve core travel could effectively reduce the wear induced by the uneven pressure distribution on the external lateral face of valve core, but it has little effect on the wear induced by the uneven pressure distribution on the bottom face. For all pipe-perpendicular-mounted type PCGVs, the variation of axial force imposed on the valve core relative to the specific valve core travel presents similar tendencies under different incoming flow velocity within the scope of the investigation, which could be concluded into a fitting equation. This work could be referred for the optimization of PCGVs and other similar valves.

References

References
1.
Jang
,
S. C.
, and
Kang
,
J. H.
,
2017
, “
Orifice Design of a Pilot-Operated Pressure Relief Valve
,”
ASME J. Pressure Vessel Technol.
,
139
(
3
), p.
031601
.10.1115/1.4034677
2.
Zhang
,
J.
,
Lu
,
Z.
,
Xu
,
B.
, and
Su
,
Q.
,
2019
, “
Investigation on the Dynamic Characteristics and Control Accuracy of a Novel Proportional Directional Valve With Independently Controlled Pilot Stage
,”
ISA Trans.
,
93
, pp.
218
230
.10.1016/j.isatra.2019.03.023
3.
Fan
,
X. W.
,
Fang
,
M. L.
,
He
,
Y. Y.
, and
Song
,
T.
,
2019
, “
Modeling and Dynamic Analysis of a Pilot-Operated Pressure-Regulating Solenoid Valve Used in Automatic Transmission With Bond Graphs
,”
J. Braz. Soc. Mech. Sci. Eng.
,
41
(
9
), p.
372
.10.1007/s40430-019-1875-8
4.
Wu
,
S.
,
Jiao
,
Z. X.
,
Yan
,
L.
, and
Dong
,
W. H.
,
2015
, “
A High Flow Rate and Fast Response Electrohydraulic Servo Valve Based on a New Spiral Groove Hydraulic Pilot Stage
,”
ASME J. Dyn. Syst. Meas., Control
,
137
(
6
), p.
061010
.10.1115/1.4029356
5.
Zhao
,
J. Y.
, and
Liu
,
L.
,
2018
, “
Influence of Reversing Impact Load on Performance of a Two-Step Unloading Pilot-Operated Check Valves
,”
J. Braz. Soc. Mech. Sci. Eng.
,
40
(
6
), p.
295
.10.1007/s40430-018-1219-0
6.
Wu
,
L.
,
Chen
,
K. S.
, and
Zhan
,
C. C.
,
2018
, “
Snapshot POD Analysis of Transient Flow in the Pilot Stage of a Jet Pipe Servo Valve
,”
J. Turbul.
,
19
(
10
), pp.
889
909
.10.1080/14685248.2018.1524579
7.
Saha
,
B. K.
,
Gangopadhyay
,
T.
, and
Sanyal
,
D.
,
2016
, “
Pilot-Dynamics Coupled Finite Volume Analysis of Main Flow Transients Through a Pneumatic Pressure-Regulating Valve
,”
ASME J. Dyn. Syst. Meas., Control
,
138
(
2
), p.
021008
.10.1115/1.4032134
8.
Wu
,
L.
,
Chen
,
K. S.
, and
Guo
,
Y.
,
2019
, “
Research on Cavitation Phenomena in Pilot Stage of Jet Pipe Servo-Valve With a Rectangular Nozzle Based on Large-Eddy Simulations
,”
AIP Adv.
,
9
(
2
), p.
025109
.10.1063/1.5038402
9.
Yang
,
Q. J.
,
Aung
,
N. Z.
, and
Li
,
S. J.
,
2015
, “
Confirmation on the Effectiveness of Rectangle-Shaped Flapper in Reducing Cavitation in Flapper-Nozzle Pilot Valve
,”
Energy Convers. Manage.
,
98
, pp.
184
198
.10.1016/j.enconman.2015.03.096
10.
Yang
,
H.
,
Wang
,
W.
,
Lu
,
K. Q.
, and
Chen
,
Z. F.
,
2019
, “
Cavitation Reduction of a Flapper-Nozzle Pilot Valve Using Continuous Microjets
,”
Int. J. Heat Mass Transfer
,
133
, pp.
1099
1109
.10.1016/j.ijheatmasstransfer.2019.01.008
11.
Yuan
,
X. J.
, and
Guo
,
K. H.
,
2015
, “
Modelling and Analysis for a Pilot Relief Valve Using CFD Method and Deformation Theory of Thin Plates
,”
Sci. China-Technol. Sci.
,
58
(
6
), pp.
979
998
.10.1007/s11431-015-5822-3
12.
Aung
,
N. Z.
,
Yang
,
Q. J.
,
Chen
,
M.
, and
Li
,
S. J.
,
2014
, “
CFD Analysis of Flow Forces and Energy Loss Characteristics in a Flapper-Nozzle Pilot Valve With Different Null Clearances
,”
Energy Convers. Manage.
,
83
, pp.
284
295
.10.1016/j.enconman.2014.03.076
13.
Zhang
,
S. Z.
,
Aung
,
N. Z.
, and
Li
,
S. J.
,
2015
, “
Reduction of Undesired Lateral Forces Acting on the Flapper of a Flapper-Nozzle Pilot Valve by Using an Innovative Flapper Shape
,”
Energy Convers. Manage.
,
106
, pp.
835
848
.10.1016/j.enconman.2015.10.012
14.
Allison
,
T. C.
, and
Brun
,
K.
,
2016
, “
Testing and Modeling of an Acoustic Instability in Pilot-Operated Pressure Relief Valves
,”
ASME J. Eng. Gas Turbines Power
,
138
(
5
), p.
052401
.10.1115/1.4031623
15.
Li
,
L.
,
Yan
,
H.
,
Zhang
,
H. X.
, and
Li
,
J.
,
2018
, “
Numerical Simulation and Experimental Research of the Flow Force and Forced Vibration in the Nozzle-Flapper Valve
,”
Mech. Syst. Signal Proc.
,
99
, pp.
550
566
.10.1016/j.ymssp.2017.06.024
16.
Chen
,
M.
,
Aung
,
N. Z.
,
Li
,
S. J.
, and
Zou
,
C. F.
,
2019
, “
Effect of Oil Viscosity on Self-Excited Noise Production Inside the Pilot Stage of a Two-Stage Electrohydraulic Servovalve
,”
ASME J. Fluids Eng.
,
141
(
1
), p.
011106
.10.1115/1.4040500
17.
Chen
,
M.
,
Xiang
,
D.
,
Li
,
S. J.
, and
Zou
,
C. F.
,
2018
, “
Suppression of Squeal Noise Excited by the Pressure Pulsation From the Flapper-Nozzle Valve Inside a Hydraulic Energy System
,”
Energies
,
11
(
4
), p.
955
.10.3390/en11040955
18.
Han
,
H.
,
Li
,
S. J.
,
Guo
,
L.
, and
Wu
,
Q. W.
,
2017
, “
Numerical Investigation on Suppressing High Frequency Self-Excited Noises of Armature Assembly in a Torque Motor Using Ferrofluid
,”
Shock Vib.
,
2017
, p.
4251320
.
19.
Wang
,
H.
,
Wang
,
X. H.
,
Huang
,
J. H.
,
Wang
,
J.
, and
Quan
,
L.
,
2018
, “
A Novel Control Strategy for Pilot Controlled Proportional Flow Valve With Internal Displacement-Flow Feedback
,”
ASME J. Dyn. Syst. Meas., Control
,
140
(
11
), p.
111014
.10.1115/1.4040328
20.
Lu
,
Z.
,
Zhang
,
J.
,
Xu
,
B.
,
Wang
,
D.
,
Su
,
Q.
,
Qian
,
J.
,
Yang
,
G.
, and
Pan
,
M.
,
2019
, “
Deadzone Compensation Control Based on Detection of Micro Flow Rate in Pilot Stage of Proportional Directional Valve
,”
ISA Trans.
,
94
, pp.
234
245
.10.1016/j.isatra.2019.03.030
21.
Wang
,
S.
,
Zhang
,
B.
,
Zhong
,
Q.
, and
Yang
,
H. Y.
,
2017
, “
Study on Control Performance of Pilot High-Speed Switching Valve
,”
Adv. Mech. Eng.
,
9
(
7
), 168781401770890.10.1177/1687814017708908
22.
Xie
,
H. B.
,
Liu
,
J. B.
,
Hu
,
L.
,
Yang
,
H. Y.
, and
Fu
,
X.
,
2015
, “
Design of Pilot-Assisted Load Control Valve for Proportional Flow Control and Fast Opening Performance Based on Dynamics Modeling
,”
Sens. Actuator A-Phys.
,
235
, pp.
95
104
.10.1016/j.sna.2015.09.042
23.
Hao
,
Q. H.
,
Wu
,
W. R.
,
Liang
,
X. J.
, and
Liu
,
Z.
,
2019
, “
Effects of Structure Parameters on Abnormal Opening of Pilot-Operated Relief Valve Under Alternating Pressure
,”
IEEE Access
,
7
, pp.
33932
33942
.10.1109/ACCESS.2019.2903089
24.
Hao
,
Q. H.
,
Wu
,
W. R.
,
Liu
,
Z.
, and
Liang
,
X. J.
,
2019
, “
Abnormal Opening Mechanism of Pilot-Operated Relief Valve Under Alternating Pressure
,”
IEEE Access
,
7
, pp.
129709
129718
.10.1109/ACCESS.2019.2939477
25.
Jin
,
Z. J.
,
Gao
,
Z. X.
,
Zhang
,
M.
, and
Qian
,
J. Y.
,
2017
, “
Pressure Drop Analysis of Pilot-Control Globe Valve With Different Structural Parameters
,”
ASME J. Fluids Eng.
,
139
(
9
), p.
091102
.10.1115/1.4036268
26.
Qian
,
J. Y.
,
Gao
,
Z. X.
,
Wang
,
J. K.
, and
Jin
,
Z. J.
,
2017
, “
Experimental and Numerical Analysis of Spring Stiffness on Flow and Valve Core Movement in Pilot Control Globe Valve
,”
Int. J. Hydrogen Energy
,
42
(
27
), pp.
17192
17201
.10.1016/j.ijhydene.2017.05.190
27.
Qian
,
J. Y.
,
Liu
,
B. Z.
,
Lei
,
L. N.
,
Zhang
,
H.
,
Lu
,
A. L.
,
Wang
,
J. K.
, and
Jin
,
Z. J.
,
2016
, “
Effects of Orifice on Pressure Difference in Pilot-Control Globe Valve by Experimental and Numerical Methods
,”
Int. J. Hydrogen Energy
,
41
(
41
), pp.
18562
18570
.10.1016/j.ijhydene.2016.08.070
28.
Colombo
,
E.
,
Inzoli
,
F.
, and
Mereu
,
R.
,
2012
, “
A Methodology for Qualifying Industrial CFD: The Q3 Approach and the Role of a Protocol
,”
Comput. Fluids
,
54
, pp.
56
66
.10.1016/j.compfluid.2011.10.003
29.
Celik
,
I. B.
,
Ghia
,
U.
,
Roache
,
P. J.
,
Freitas
,
C. J.
,
Coleman
,
H. W.
, and
Raad
,
P. E.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
,
130
(
7
), p.
078001
.10.1115/1.2960953
You do not currently have access to this content.