Abstract

A numerical investigation is performed on buoyancy-driven homogeneous and heterogeneous bubbly flows to compare the bulk gas–liquid heat transfer effectiveness for Prandtl (Pr) numbers 0.2–20 and void fractions αg 0.3–0.5. For this purpose, transient two-fluid model simulations of bubbles rising in a stagnant pool of liquid are conducted in a rectangular box by applying periodic boundary conditions to all the sides. The temperature difference (ΔT) between gas and liquid phase is averaged over the rectangular box and monitored with respect to time, the heat transfer rate is studied based on the time at which the ΔT tends to zero. The results of numerical study show that at low Pr numbers, faster decay of ΔT is observed for homogeneous flow of bubbles indicating higher heat transfer rate in comparison with the heterogeneous flow of bubbles for the same void fraction. On the contrary, for high Pr numbers, higher heat transfer rate is observed in heterogeneous flow compared to the homogeneous. The comparison of heat transfer behavior between different void fractions for heterogeneous flow show that, for low Pr numbers higher heat transfer rate is achieved for void fraction 0.4 in comparison with void fraction 0.5. And for high Pr numbers, higher heat transfer is observed for void fraction 0.5 in comparison with void fraction 0.4.

References

References
1.
Deckwer
,
W.-D.
,
1980
, “
On the Mechanism of Heat Transfer in Bubble Column Reactors
,”
Chem. Eng. Sci.
,
35
(
6
), pp.
1341
1346
.10.1016/0009-2509(80)85127-X
2.
Konsetov
,
V.
,
1966
, “
Heat Transfer During Bubbling of Gas Through Liquid
,”
Int. J. Heat Mass Transfer
,
9
(
10
), pp.
1103
1108
.10.1016/0017-9310(66)90033-0
3.
Nishikawa
,
M.
,
Kato
,
H.
, and
Hashimoto
,
K.
,
1977
, “
Heat Transfer in Aerated Tower Filled With Non-Newtonian Liquid
,”
Ind. Eng. Chem. Process Des. Dev.
,
16
(
1
), pp.
133
137
.10.1021/i260061a607
4.
Hikita
,
H.
,
Asai
,
S.
,
Kikukawa
,
H.
,
Zaike
,
T.
, and
Ohue
,
M.
,
1981
, “
Heat Transfer Coefficient in Bubble Columns
,”
Ind. Eng. Chem. Process Des. Dev.
,
20
(
3
), pp.
540
545
.10.1021/i200014a027
5.
Verma
,
A.
,
1989
, “
Heat Transfer Mechanism in Bubble Columns
,”
Chem. Eng. J.
,
42
(
3
), pp.
205
208
.10.1016/0300-9467(89)80088-7
6.
Avdeev
,
A. A.
,
Balunov
,
B. F.
, and
Kiselev
,
V.
,
1992
, “
Heat Transfer in Bubble Layers at High Pressures
,”
Exp. Thermal Fluid Sci.
,
5
(
6
), pp.
728
735
.10.1016/0894-1777(92)90116-M
7.
Tow
,
E. W.
, and
Lienhard
,
J. H.
,
2014
, “
Heat Transfer to a Horizontal Cylinder in a Shallow Bubble Column
,”
Int. J. Heat Mass Transfer
,
79
, pp.
353
361
.10.1016/j.ijheatmasstransfer.2014.08.021
8.
Larimi
,
M.
, and
Ramiar
,
A.
,
2018
, “
Two-Dimensional Bubble Rising Through Quiescent and Non-Quiescent Fluid: Influence on Heat Transfer and Flow Behavior
,”
Int. J. Therm. Sci.
,
131
, pp.
58
71
.10.1016/j.ijthermalsci.2018.05.031
9.
Kumar
,
S.
,
Kusakabe
,
K.
, and
Fan
,
L.
,
1993
, “
Heat Transfer in Three-Phase Fluidization and Bubble-Columns With High Gas Holdups
,”
AIChE J.
,
39
(
8
), pp.
1399
1405
.10.1002/aic.690390817
10.
Wu
,
Y.
,
Ong
,
B. C.
, and
Al-Dahhan
,
M.
,
2001
, “
Predictions of Radial Gas Holdup Profiles in Bubble Column Reactors
,”
Chem. Eng. Sci.
,
56
(
3
), pp.
1207
1210
.10.1016/S0009-2509(00)00341-9
11.
Gandhi
,
A. B.
, and
Joshi
,
J. B.
,
2010
, “
Estimation of Heat Transfer Coefficient in Bubble Column Reactors Using Support Vector Regression
,”
Chem. Eng. J.
,
160
(
1
), pp.
302
310
.10.1016/j.cej.2010.03.026
12.
Jhawar
,
A.
, and
Prakash
,
A.
,
2011
, “
Influence of Bubble Column Diameter on Local Heat Transfer and Related Hydrodynamics
,”
Chem. Eng. Res. Des.
,
89
(
10
), pp.
1996
2002
.10.1016/j.cherd.2010.11.019
13.
Abdulmohsin
,
R. S.
,
Abid
,
B. A.
, and
Al-Dahhan
,
M. H.
,
2011
, “
Heat Transfer Study in a Pilot-Plant Scale Bubble Column
,”
Chem. Eng. Res. Des.
,
89
(
1
), pp.
78
84
.10.1016/j.cherd.2010.04.019
14.
Zizka
,
M.
,
Sulc
,
R.
, and
Ditl
,
P.
,
2017
, “
Heat Transfer Between Gas and Liquid in a Bubble Column
,”
Chem. Eng. Trans.
,
57
, pp.
1261
1266
.10.3303/CET1757211
15.
Panicker
,
N.
,
Passalacqua
,
A.
, and
Fox
,
R.
,
2020
, “
Computational Study of Buoyancy Driven Turbulence in Statistically Homogeneous Bubbly Flows
,”
Chem. Eng. Sci.
,
216
, p.
115546
.10.1016/j.ces.2020.115546
16.
Shaikh
,
A.
, and
Al-Dahhan
,
M. H.
,
2007
, “
A Review on Flow Regime Transition in Bubble Columns
,”
Int. J. Chem. Reactor Eng.
,
5
(
1
), pp. 1–67. 10.2202/1542-6580.1368
17.
Dhotre
,
M. T.
,
Niceno
,
B.
, and
Smith
,
B. L.
,
2008
, “
Large Eddy Simulation of a Bubble Column Using Dynamic Sub-Grid Scale Model
,”
Chem. Eng. J.
,
136
(
2–3
), pp.
337
348
.10.1016/j.cej.2007.04.016
18.
Deen
,
N. G.
,
Solberg
,
T.
, and
Hjertager
,
B. H.
,
2001
, “
Large Eddy Simulation of the Gas–Liquid Flow in a Square Cross-Sectioned Bubble Column
,”
Chem. Eng. Sci.
,
56
(
21–22
), pp.
6341
6349
.10.1016/S0009-2509(01)00249-4
19.
Joshi
,
J. B.
,
2001
, “
Computational Flow Modelling and Design of Bubble Column Reactors
,”
Chem. Eng. Sci.
,
56
(
21–22
), pp.
5893
5933
.10.1016/S0009-2509(01)00273-1
20.
Panicker
,
N.
,
Passalacqua
,
A.
, and
Fox
,
R. O.
,
2018
, “
On the Hyperbolicity of the Two-Fluid Model for Gas–Liquid Bubbly Flows
,”
Appl. Math. Modell.
,
57
, pp.
432
447
.10.1016/j.apm.2018.01.011
21.
Drew
,
D. A.
,
1983
, “
Mathematical Modeling of Two-Phase Flow
,”
Annu. Rev. Fluid Mech.
,
15
(
1
), pp.
261
291
.10.1146/annurev.fl.15.010183.001401
22.
Sato
,
Y.
, and
Sekoguchi
,
K.
,
1975
, “
Liquid Velocity Distribution in Two-Phase Bubble Flow
,”
Int. J. Multiphase Flow
,
2
(
1
), pp.
79
95
.10.1016/0301-9322(75)90030-0
23.
Happel
,
J.
, and
Brenner
,
H.
,
2012
,
Low Reynolds Number Hydrodynamics: With Special Applications to Particulate Media
, Vol.
1
,
Springer Science & Business Media
, Dordrecht, The Netherlands.
24.
Schiller
,
L.
, and
Naumann
,
Z.
,
1935
, “
A Drag Coefficient Correlation
,”
VDI Zeitung
,
77
(
318
), p.
51
.
25.
Beetstra
,
R.
,
van der Hoef
,
M. A.
, and
Kuipers
,
J. A. M.
,
2007
, “
Drag Force of Intermediate Reynolds Number Flow Past Mono and Bidisperse Arrays of Spheres
,”
AIChE J.
,
53
(
2
), pp.
489
501
.10.1002/aic.11065
26.
Levich
,
V. G.
,
1962
,
Physicochemical Hydrodynamics
,
Prentice Hall
, Upper Saddle River, NJ.
27.
Tomiyama
,
A.
,
1998
, “
Struggle With Computational Bubble Dynamics
,”
Multiphase Sci. Technol.
,
10
(
4
), pp.
369
405
.10.1615/MultScienTechn.v10.i4.40
28.
Milne-Thompson
,
L. M.
,
1968
,
Theoretical Hydrodynamics
, 5th ed., 1,
MacMillan
,
London
.
29.
Maxey
,
M. R.
, and
Riley
,
J. J.
,
1983
, “
Equation of Motion for a Small Rigid Sphere in a Nonuniform Flow
,”
Phys. Fluids (1958–1988)
,
26
(
4
), pp.
883
889
.10.1063/1.864230
30.
Buwa
,
V. V.
, and
Ranade
,
V. V.
,
2002
, “
Dynamics of Gas–Liquid Flow in a Rectangular Bubble Column: Experiments and Single/Multi-Group CFD Simulations
,”
Chem. Eng. Sci.
,
57
(
22–23
), pp.
4715
4736
.10.1016/S0009-2509(02)00274-9
31.
Lahey
,
R. T.
,
1990
, “
The Analysis of Phase Separation and Phase Distribution Phenomena Using Two-Fluid Models
,”
Nucl. Eng. Des.
,
122
(
1–3
), pp.
17
40
.10.1016/0029-5493(90)90194-3
32.
Ekambara
,
K.
,
Nandakumar
,
K.
, and
Joshi
,
J. B.
,
2008
, “
CFD Simulation of Bubble Column Reactor Using Population Balance
,”
Ind. Eng. Chem. Res.
,
47
(
21
), pp.
8505
8516
.10.1021/ie071393e
33.
Zun
,
I.
,
1980
, “
The Transverse Migration of Bubbles Influenced by Walls in Vertical Bubbly Flow
,”
Int. J. Multiphase Flow
,
6
(
6
), pp.
583
588
.10.1016/0301-9322(80)90053-1
34.
Torvik
,
R.
, and
Svendsen
,
H. F.
,
1990
, “
Modelling of Slurry Reactors. A Fundamental Approach
,”
Chem. Eng. Sci.
,
45
(
8
), pp.
2325
2332
.10.1016/0009-2509(90)80112-R
35.
Delnoij
,
E.
,
Lammers
,
F. A.
,
Kuipers
,
J. A. M.
, and
van Swaaij
,
W. P. M.
,
1997
, “
Dynamic Simulation of Dispersed Gas–Liquid Two-Phase Flow Using a Discrete Bubble Model
,”
Chem. Eng. Sci.
,
52
(
9
), pp.
1429
1458
.10.1016/S0009-2509(96)00515-5
36.
Tomiyama
,
A.
,
Tamai
,
H.
,
Zun
,
I.
, and
Hosokawa
,
S.
,
2002
, “
Transverse Migration of Single Bubbles in Simple Shear Flows
,”
Chem. Eng. Sci.
,
57
(
11
), pp.
1849
1858
.10.1016/S0009-2509(02)00085-4
37.
Kumbaro
,
A.
, and
Ndjinga
,
M.
,
2011
, “
Influence of Interfacial Pressure Term on the Hyperbolicity of a General Multi-Fluid Model
,”
J. Comput. Multiphase Flows
,
3
(
3
), pp.
177
195
.10.1260/1757-482X.3.3.177
38.
Ranz
,
W.
, and
Marshall
,
W. R.
,
1952
, “
Evaporation From Drops
,”
Chem. Eng. Prog.
,
48
(
3
), pp.
141
146
.http://dns2.asia.edu.tw/~ysho/YSHO-English/1000%20CE/PDF/Che%20Eng%20Pro48,%20141.pdf
39.
Končar
,
B.
, and
Krepper
,
E.
,
2008
, “
CFD Simulation of Convective Flow Boiling of Refrigerant in a Vertical Annulus
,”
Nucl. Eng. Des.
,
238
(
3
), pp.
693
706
.10.1016/j.nucengdes.2007.02.035
40.
Yeoh
,
G.
, and
Tu
,
J.
,
2004
, “
Population Balance Modelling for Bubbly Flows With Heat and Mass Transfer
,”
Chem. Eng. Sci.
,
59
(
15
), pp.
3125
3139
.10.1016/j.ces.2004.04.023
41.
Bari
,
G. S.
,
Gent
,
S. P.
,
Suess
,
T. N.
, and
Anderson
,
G. A.
,
2012
, “
Hydrodynamic and Heat Transfer Effects of Different Sparger Spacings Within a Column Photobioreactor Using Computational Fluid Dynamics
,”
ASME
Paper No. IMECE2012-87898.10.1115/IMECE2012-87898
42.
Mortuza
,
S.
,
Gent
,
S. P.
,
Kommareddy
,
A.
, and
Anderson
,
G. A.
,
2011
, “
Computational and Experimental Investigation of Heat Transfer Within a Column Photobioreactor
,”
ASME
Paper No. IMECE2011-63947.
10.1115/IMECE2011-63947
43.
Laborde-Boutet
,
C.
,
Larachi
,
F.
,
Dromard
,
N.
,
Delsart
,
O.
,
Béliard
,
P.-E.
, and
Schweich
,
D.
,
2010
, “
CFD Simulations of Hydrodynamic/Thermal Coupling Phenomena in a Bubble Column With Internals
,”
AIChE J.
,
56
(
9
), pp.
2397
2411
.
44.
Gunn
,
D.
,
1978
, “
Transfer of Heat or Mass to Particles in Fixed and Fluidised Beds
,”
Int. J. Heat Mass Transfer
,
21
(
4
), pp.
467
476
.10.1016/0017-9310(78)90080-7
45.
Syamlal
,
M.
,
Rogers
,
W.
, and
OBrien
,
T. J.
,
1993
, “
Mfix Documentation Theory Guide
,” USDOE Morgantown Energy Technology Center, Morgantown, WV, Report No.
DOE/METC-94/1004
.10.2172/10145548
46.
Guo
,
L.
, and
Capecelatro
,
J.
,
2019
, “
The Role of Clusters on Heat Transfer in Sedimenting Gas-Solid Flows
,”
Int. J. Heat Mass Transfer
,
132
, pp.
1217
1230
.10.1016/j.ijheatmasstransfer.2018.12.065
47.
OpenFOAM
,
2016
, “OpenFOAM User Guide,”
The OpenFOAM Foundation
, UK.
48.
Shampine
,
L. F.
, and
Reichelt
,
M. W.
,
1997
, “
The Matlab Ode Suite
,”
SIAM J. Sci. Comput.
,
18
(
1
), pp.
1
22
.10.1137/S1064827594276424
You do not currently have access to this content.