Abstract

A preliminary two-dimensional (2D) numerical investigation of the active control of unsteady cavitation by means of one single synthetic jet actuator (SJA) is presented. The investigation involves the cloud-cavitating flow of water around a NACA 0015 hydrofoil with an angle of attack of 8-deg and ambient conditions. The SJA locates on the suction side at a distance of 16% of the chord from the leading edge; it has been modeled by means of a user-defined velocity boundary conditions based on a sinusoidal waveform. A Eulerian homogeneous mixture model has been used, coupled with an extended Schnerr–Sauer cavitation model and a volume of fluid interface tracking method. As first, a sensitivity analysis allowed to evaluate the influence of the main control parameters, namely, the momentum coefficient Cμ, the dimensionless frequency F+, and the jet angle αjet. As a result, the best performing SJA configuration was retrieved at Cμ=0.0002,F+=0.309, and αjet=90deg, which led to a reduction of both the average vapor content and the average torsional load in the measure of 34.6% and 17.8%. The analysis of the coupled dynamics between vapor cavity–vorticity and their proper orthogonal decomposition (POD)-based modal structures highlighted the benefit of the SJA lies in preventing the growth of a thick sheet cavity, which causes the development of the highly cavitating cloud dynamics after the cavity breakup. This is mainly due to an additional vorticity close to the hydrofoil surface just downstream the SJA, as well as a local pressure modification close the SJA during the blowing stroke.

References

References
1.
Furness
,
R. A.
, and
Hutton
,
S. P.
,
1975
, “
Experimental and Theoretical Studies of Two-Dimensional Fixed-Type Cavities
,”
ASME J. Fluids Eng.
,
97
(
4
)12, pp.
515
521
.10.1115/1.3448098
2.
Le
,
Q.
,
Franc
,
J. P.
, and
Michel
,
J. M.
,
1993
, “
Partial Cavities: Pressure Pulse Distribution Around Cavity Closure
,”
ASME J. Fluids Eng.
,
115
(
2
), pp.
249
254
.10.1115/1.2910132
3.
Stutz
,
B.
, and
Reboud
,
J. L.
,
1997
, “
Experiments on Unsteady Cavitation
,”
Exp. Fluids
,
22
(
3
), pp.
191
198
.10.1007/s003480050037
4.
Pham
,
T.
,
Larrarte
,
F.
, and
Fruman
,
D.
,
1999
, “
Investigation of Unsteady Sheet Cavitation and Cloud Cavitation Mechanisms
,”
ASME J. Fluids Eng.
,
121
(
2
), pp.
289
296
.10.1115/1.2822206
5.
Laberteaux
,
K.
, and
Ceccio
,
S.
,
2001
, “
Partial Cavity Flows. part 1. cavities Forming on Models Without Spanwise Variation
,”
J. Fluid Mech.
,
431
, pp.
1
41
.10.1017/S0022112000002925
6.
Franc
,
J.-P.
,
2001
, “
Partial Cavity Instabilities and Re-Entrant Jet
,”
Fourth International Symposium on Cavitation
,
Pasadena, CA
, June.
7.
Callenaere
,
M.
,
Franc
,
J.-P.
, and
Michel
,
J.-M.
,
1998
, “
Influence of Cavity Thickness and Pressure Gradient on the Unsteady Behaviour of Partial Cavities
,”
Third International Symposium on Cavitation
,
Grenoble, France
, Apr.
7
10
.
8.
Kawanami
,
Y.
,
Kato
,
H.
,
Yamaguchi
,
H.
,
Tanimura
,
M.
, and
Tagaya
,
Y.
,
1997
, “
Mechanism and Control of Cloud Cavitation
,”
ASME J. Fluids Eng.
,
119
(
4
), pp.
788
794
.10.1115/1.2819499
9.
Sakoda
,
M.
,
Yakushiji
,
R.
,
Maeda
,
M.
, and
Yamaguchi
,
H.
,
2001
, “
Mechanism of Cloud Cavitation Generation on a 2-d Hydrofoil
,”
Fourth International Symposium on Cavitation
,
Pasadena, CA
, June, accessed July 24, 2020, http://resolver.caltech.edu/cav2001:SessionA9.004
10.
Cervone
,
A.
,
Bramanti
,
C.
,
Rapposelli
,
E.
, and
d'Agostino
,
L.
,
2006
, “
Thermal Cavitation Experiments on a NACA 0015 Hydrofoil
,”
ASME J. Fluids Eng.
,
128
(
2
), pp.
326
331
.10.1115/1.2169808
11.
Tsujimoto
,
Y.
,
Watanabe
,
S.
, and
Horiguchi
,
H.
,
2008
, “
Cavitation Instabilities of Hydrofoils and Cascades
,”
Int. J. Fluid Mach. Syst.
,
1
(
1
), pp.
38
46
.10.5293/IJFMS.2008.1.1.038
12.
Arndt
,
R. E.
,
Song
,
C.
,
Kjeldsen
,
M.
,
He
,
J.
, and
Keller
,
A.
,
2000
, “
Instability of Partial Cavitation: A Numerical/Experimental Approach
,”
Twenty-Third Symposium on Naval Hydrodynamics
, National Academies Press. Retrieved From the University of Minnesota Digital Conservancy.http://hdl.handle.net/11299/49781
13.
Kjeldsen
,
M.
, and
Arndt
,
R. E.
,
2001
, “
Joint Time Frequency Analysis Techniques: A Study of Transitional Dyamics in Sheet/Cloud Cavitation
,”
Fourth International Symposium on Cavitation
,
Pasadena, CA
, June, accessed July 24, 2020, http://resolver.caltech.edu/cav2001:SessionA9.001
14.
Fujii
,
A.
,
Kawakami
,
D. T.
,
Tsujimoto
,
Y.
, and
Arndt
,
R. E.
,
2007
, “
Effect of Hydrofoil Shapes on Partial and Transitional Cavity Oscillations
,”
ASME J. Fluids Eng.
,
129
(
6
), pp.
669
673
.10.1115/1.2734183
15.
Kawakami
,
D. T.
,
Fuji
,
A.
,
Tsujimoto
,
Y.
, and
Arndt
,
R.
,
2008
, “
An Assessment of the Influence of Environmental Factors on Cavitation Instabilities
,”
ASME J. Fluids Eng.
,
130
(
3
), p.
031303
.10.1115/1.2842146
16.
Ganesh
,
H.
,
Makiharju
,
S.
, and
Ceccio
,
S. L.
,
2014
, “
Partial Cavity Shedding Due to the Propagation of Shock Waves in Bubbly Flows
,”
Proceedings of the 30th Symposium on Naval Hydrodynamics
,
Hobart, Australia
, Nov. 2–7.
17.
Ganesh
,
H.
,
Mäkiharju
,
S.
, and
Ceccio
,
S.
,
2017
, “
Bubbly Shock Propagation as a Mechanism of Shedding in Separated Cavitating Flows
,”
J. Hydrodyn.
,
29
(
6
), pp.
907
916
.10.1016/S1001-6058(16)60805-3
18.
Wu
,
Q.
,
Huang
,
B.
,
Wang
,
G.
, and
Cao
,
S.
,
2018
, “
The Transient Characteristics of Cloud Cavitating Flow Over a Flexible Hydrofoil
,”
Int. J. Multiphase Flow
,
99
, pp.
162
173
.10.1016/j.ijmultiphaseflow.2017.10.006
19.
Wei
,
G.
, and
Yousheng
,
H.
,
2001
, “
Flow Control on Unstable Cavitation Phenomena
,”
Acta Mech. Sin.
,
1
, p.
002
.http://en.cnki.com.cn/Article_en/CJFDTotal-LXXB200101002.htm
20.
Tassin Leger
,
A.
, and
Ceccio
,
S.
,
1998
, “
Examination of the Flow Near the leading edge of attached cavitation—Part 1: Detachment of Two-Dimensional and Axisymmetric Cavities
,”
J. Fluid Mech.
,
376
, pp.
61
90
.10.1017/S0022112098002766
21.
Churkin
,
S.
,
Pervunin
,
K.
,
Kravtsova
,
A.
,
Markovich
,
D.
, and
Hanjalić
,
K.
,
2016
, “
Cavitation on naca0015 Hydrofoils With Different Wall Roughness: High-Speed Visualization of the Surface Texture Effects
,”
J. Visualization
,
19
(
4
), pp.
587
590
.10.1007/s12650-016-0355-9
22.
Danlos
,
A.
,
Ravelet
,
F.
,
Coutier-Delgosha
,
O.
, and
Bakir
,
F.
,
2014
, “
Cavitation Regime Detection Through Proper Orthogonal Decomposition: Dynamics Analysis of the Sheet Cavity on a Grooved Convergent-Divergent Nozzle
,”
Int. J. Heat Fluid Flow
,
47
, pp.
9
20
.10.1016/j.ijheatfluidflow.2014.02.001
23.
Ausoni
,
P.
,
Zobeiri
,
A.
,
Avellan
,
F.
, and
Farhat
,
M.
,
2012
, “
The Effects of a Tripped Turbulent Boundary Layer on Vortex Shedding From a Blunt Trailing Edge Hydrofoil
,”
ASME J. Fluids Eng.
,
134
(
5
), p.
051207
.10.1115/1.4006700
24.
Coutier-Delgosha
,
O.
,
Devillers
,
J.-F.
,
Leriche
,
M.
, and
Pichon
,
T.
,
2005
, “
Effect of Wall Roughness on the Dynamics of Unsteady Cavitation
,”
ASME J. Fluids Eng.
,
127
(
4
), pp.
726
733
.10.1115/1.1949637
25.
Dai
,
Y.-J.
,
Zhang
,
Y.-Y.
, and
Huang
,
D.-G.
,
2012
, “
Numerical Study of the Impact of Hydrofoil Surface Roughness on Cavitation Suppression
,”
Kung Cheng Je Wu Li Hsueh Pao/J. Eng. Thermophys.
,
33
(
5
), pp.
770
773
. https://en.cnki.com.cn/Article_en/CJFDTOTAL-GCRB201205012.htm
26.
Akcabay
,
D.
,
Chae
,
E.
,
Young
,
Y.
,
Ducoin
,
A.
, and
Astolfi
,
J.
,
2014
, “
Cavity Induced Vibration of Flexible Hydrofoils
,”
J. Fluids Struct.
,
49
, pp.
463
484
.10.1016/j.jfluidstructs.2014.05.007
27.
Zarruk
,
G.
,
Brandner
,
P.
,
Pearce
,
B.
, and
Phillips
,
A.
,
2014
, “
Experimental Study of the Steady Fluid-Structure Interaction of Flexible Hydrofoils
,”
J. Fluids Struct.
,
51
, pp.
326
343
.10.1016/j.jfluidstructs.2014.09.009
28.
Wu
,
Q.
,
Huang
,
B.
,
Wang
,
G.
, and
Gao
,
Y.
,
2015
, “
Experimental and Numerical Investigation of Hydroelastic Response of a Flexible Hydrofoil in Cavitating Flow
,”
Int. J. Multiphase Flow
,
74
, pp.
19
33
.10.1016/j.ijmultiphaseflow.2015.03.023
29.
Kadivar
,
E.
,
Moctar
,
O.
, and
Javadi
,
K.
,
2018
, “
Investigation of the Effect of Cavitation Passive Control on the Dynamics of Unsteady Cloud Cavitation
,”
Appl. Math. Modell.
,
64
, pp.
333
356
.10.1016/j.apm.2018.07.015
30.
Zhao
,
W.
,
Zhao
,
G.
,
Xian
,
L.
, and
Han
,
X.
,
2017
, “
Effect of Surface-Fitted Obstacle in Centrifugal Pump on Cavitation  Suppression
,”
Nongye Jixie Xuebao/Trans. Chin. Soc. Agric. Mach.
,
48
(
9
), pp.
111
120
.https://jglobal.jst.go.jp/en/detail?JGLOBAL_ID=201802276018169819
31.
Che
,
B.
,
Chu
,
N.
,
Cao
,
L.
,
Schmidt
,
S. J.
,
Likhachev
,
D.
, and
Wu
,
D.
,
2019
, “
Control Effect of Micro Vortex Generators on Attached Cavitation Instability
,”
Phys. Fluids
,
31
(
6
), p.
064102
.10.1063/1.5099089
32.
Kadivar
,
E.
,
Timoshevskiy
,
M. V.
,
Pervunin
,
K. S.
, and
el Moctar
,
O.
,
2019
, “
Experimental and Numerical Study of the Cavitation Surge Passive Control Around a Semi-Circular Leading-Edge Flat Plate
,”
J. Mar. Sci. Technol.
,
139
, pp.
1
14
.
33.
Kadivar
,
E.
,
Timoshevskiy
,
M. V.
,
Pervunin
,
K. S.
, and
el Moctar
,
O.
,
2020
, “
Cavitation Control Using Cylindrical Cavitating-Bubble Generators (CCGs): Experiments on a Benchmark cav2003 Hydrofoil
,”
Int. J. Multiphase Flow
,
125
, p.
103186
.10.1016/j.ijmultiphaseflow.2019.103186
34.
Javadi
,
K.
,
Dorostkar
,
M. M.
, and
Katal
,
A.
,
2017
, “
Cavitation Passive Control on Immersed Bodies
,”
J. Mar. Sci. Appl.
,
16
(
1
), pp.
33
41
.10.1007/s11804-017-1400-3
35.
Franc
,
J.
, and
Michel
,
J.
,
1988
, “
Unsteady Attached Cavitation on an Oscillating Hydrofoil
,”
J. Fluid Mech.
,
193
(
1
), pp.
171
189
.10.1017/S0022112088002101
36.
Chatterjee
,
A.
, and
Chatterjee
,
D.
,
2006
, “
Analytical Investigation of Hydrodynamic Cavitation Control by Ultrasonics
,”
Nonlinear Dyn.
,
46
(
1–2
), pp.
179
194
.10.1007/s11071-006-9022-3
37.
Chahine
,
G. L.
,
Frederick
,
G. F.
, and
Bateman
,
R. D.
,
1993
, “
Propeller Tip Vortex Cavitation Suppression Using Selective Polymer Injection
,”
ASME J. Fluids Eng.
,
115
(
3
), pp.
497
503
.10.1115/1.2910166
38.
Naseri
,
H.
,
Trickett
,
K.
,
Mitroglou
,
N.
,
Karathanassis
,
I.
,
Koukouvinis
,
P.
,
Gavaises
,
M.
,
Barbour
,
R.
,
Diamond
,
D.
,
Rogers
,
S.
,
Santini
,
M.
, and
Wang
,
J.
,
2018
, “
Turbulence and Cavitation Suppression by Quaternary Ammonium Salt Additives
,”
Sci. Rep.
,
8
(
1
), pp.
1
15
.
39.
Mäkiharju
,
S.
,
Ganesh
,
H.
, and
Ceccio
,
S.
,
2015
, “
Effect of Non-Condensable Gas Injection on Cavitation Dynamics of Partial Cavities
,”
J. Phys.: Conf. Ser.
,
656
, p. 012161.10.1088/1742-6596/656/1/012161
40.
Yang
,
D-D.
,
Yu
,
A.
,
Ji
,
B.
,
Zhou
,
J-J.
, and
Luo
,
X-W.
,
2018
, “
Numerical Analyses of Ventilated Cavitation Over a 2-d naca0015 Hydrofoil Using Two Turbulence Modeling Methods
,”
J. Hydrodyn.
,
30
(
2
), pp.
345
356
.10.1007/s42241-018-0032-7
41.
Kozhukharov
,
P.
,
Hadjimikhalev
,
V.
,
Mikuta
,
V.
, and
Maltzev
,
L.
,
1985
, “
Hydrofoil Performance Control Introducing Tangential Liquid Jet
,”
ASME Fluids Engineering Division,
Vol.
31
, pp.
67
74
.
42.
Chang
,
N.
,
Ganesh
,
H.
,
Yakushiji
,
R.
, and
Ceccio
,
S. L.
,
2011
, “
Tip Vortex Cavitation Suppression by Active Mass Injection
,”
ASME J. Fluids Eng.
,
133
(
11
), p.
111301
.10.1115/1.4005138
43.
De La Torre
,
O.
,
Escaler
,
X.
,
Egusquiza
,
E.
, and
Farhat
,
M.
,
2013
, “
Experimental Investigation of Added Mass Effects on a Hydrofoil Under Cavitation Conditions
,”
J. Fluids Struct.
,
39
, pp.
173
187
.10.1016/j.jfluidstructs.2013.01.008
44.
Wang
,
W.
,
Yi
,
Q.
,
Lu
,
S.
, and
Wang
,
X.
,
2017
, “
Exploration and Research of the Impact of Hydrofoil Surface Water Injection on Cavitation Suppression
,”
ASME Paper No. GT2017-63779
.10.1115/GT2017-63779
45.
Lee
,
C.-S.
,
Ahn
,
B.-K.
,
Han
,
J.-M.
, and
Kim
,
J.-H.
,
2018
, “
Propeller Tip Vortex Cavitation Control and Induced Noise Suppression by Water Injection
,”
J. Mar. Sci. Technol. (Jpn.)
,
23
(
3
), pp.
453
463
.10.1007/s00773-017-0484-4
46.
Timoshevskiy
,
M.
,
Zapryagaev
,
I.
,
Pervunin
,
K.
,
Maltsev
,
L.
,
Markovich
,
D.
, and
Hanjalić
,
K.
,
2018
, “
Manipulating Cavitation by a Wall Jet: Experiments on a 2D Hydrofoil
,”
Int. J. Multiphase Flow
,
99
, pp.
312
328
.10.1016/j.ijmultiphaseflow.2017.11.002
47.
Poncet
,
P.
,
Casset
,
F.
,
Latour
,
A.
,
Domingues Dos Santos
,
F.
,
Pawlak
,
S.
,
Gwoziecki
,
R.
,
Devos
,
A.
,
Emery
,
P.
, and
Fanget
,
S.
,
2017
, “
Static and Dynamic Studies of Electro-Active Polymer Actuators and Integration in a Demonstrator
,”
Actuators
,
6
(
2
), p.
18
.10.3390/act6020018
48.
De Giorgi
,
M.
,
De Luca
,
C.
,
Ficarella
,
A.
, and
Marra
,
F.
,
2015
, “
Comparison Between Synthetic Jets and Continuous Jets for Active Flow Control: Application on a Naca 0015 and a Compressor Stator Cascade
,”
Aerosp. Sci. Technol.
,
43
, pp.
256
280
.10.1016/j.ast.2015.03.004
49.
Smith
,
B.
,
Glezer
,
A.
,
Smith
,
B.
, and
Glezer
,
A.
,
1997
, “
Vectoring and Small-Scale Motions Effected in Free Shear Flows Using Synthetic Jet Actuators
,”
35th Aerospace Sciences Meeting and Exhibit
,
Reno, NV
, Jan. 6–9, p.
213
.10.2514/6.1997-213
50.
De Giorgi
,
M.
,
Ficarella
,
A.
, and
Fontanarosa
,
D.
,
2017
, “
Implementation and Validation of an Extended Schnerr-Sauer Cavitation Model for Non-Isothermal Flows in Openfoam
,”
Energy Procedia
,
126
, pp.
58
65
.10.1016/j.egypro.2017.08.057
51.
De Giorgi
,
M. G.
,
Ficarella
,
A.
, and
Fontanarosa
,
D.
,
2020
, “
Numerical Investigation of Nonisothermal cavitating flows on Hydrofoils by Means of an Extended Schnerr–Sauer Model Coupled With a Nucleation Model
,”
ASME J. Eng. Gas Turbines Power
,
142
(
4
), p.
041003
.10.1115/1.4044352
52.
Singhal
,
A. K.
,
Athavale
,
M. M.
,
Li
,
H.
, and
Jiang
,
Y.
,
2002
, “
Mathematical Basis and Validation of the Full Cavitation Model
,”
ASME J. Fluids Eng.
,
124
(
3
), pp.
617
624
.10.1115/1.1486223
53.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
54.
Reboud
,
J.-L.
,
Stutz
,
B.
, and
Coutier-Delgosha
,
O.
,
1998
, “
Two-Phase Flow Structure of Cavitation: Experiment and Modeling of Unsteady Effects
,”
Third International Symposium on Cavitation (CAV1998)
,
Grenoble, France
, Apr. 7–10, p.
10
.
55.
Coutier-Delgosha
,
O.
,
Fortes-Patella
,
R.
, and
Reboud
,
J. L.
,
2003
, “
Evaluation of the Turbulence Model Influence on the Numerical Simulations of Unsteady Cavitation
,”
ASME J. Fluids Eng.
,
125
(
1
), pp.
38
45
.10.1115/1.1524584
56.
Gosset
,
A.
,
Lema
,
M.
, and
López Peña
,
F.
,
2012
,
Periodic Phenomena on a Partially Cavitating Hydrofoil
,
Proceedings of the 8th International Symposium on Cavitation, Research Publishing Services
, pp.
685
690
.
57.
Holzmann
,
T.
,
2016
, “
Mathematics, Numerics, Derivations and Openfoam
,” Loeben. Germany: Holzmann CFD, URL: https://holzmann-cfd.de, accessed on 27th July 2020.
58.
Krepper
,
E.
,
Lucas
,
D.
,
Frank
,
T.
,
Prasser
,
H.-M.
, and
Zwart
,
P. J.
,
2008
, “
The Inhomogeneous Musig Model for the Simulation of Polydispersed Flows
,”
Nucl. Eng. Des.
,
238
(
7
), pp.
1690
1702
.10.1016/j.nucengdes.2008.01.004
59.
Lemmon
,
E.
,
McLinden
,
M.
,
Friend
,
D.
,
Linstrom
,
P.
, and
Mallard
,
W.
,
2011
, “
NIST Chemistry Webbook
,”
National Institute of Standards and Technology
,
Gaithersburg, MD
, Standard No. 69.
60.
NASA
,
2006
, “Examining Spatial (Grid) Convergence,” NPARC Alliance CFD Verification and Validation Web Site, NASA Glenn Research Center,
Cleveland, OH
, accessed July 27, 2020, https://www.grc.nasa.gov/www/wind/valid/tutorial/spatconv.html
61.
Tropea
,
C.
,
Yarin
,
A. L.
, and
Foss
,
J. F.
,
2007
,
Springer Handbook of Experimental Fluid Mechanics
, Vol.
1
,
Springer Science & Business Media
,
Berlin
.
62.
Sirovich
,
L.
,
1987
, “
Turbulence and the Dynamics of Coherent Structures—I: Coherent Structures
,”
Q. Appl. Math.
,
45
(
3
), pp.
561
571
.10.1090/qam/910462
63.
Asnaghi
,
A.
,
Feymark
,
A.
, and
Bensow
,
R.
,
2018
, “
Numerical Investigation of the Impact of Computational Resolution on Shedding Cavity Structures
,”
Int. J. Multiphase Flow
,
107
, pp.
33
50
.10.1016/j.ijmultiphaseflow.2018.05.021
64.
De Giorgi
,
M.
,
Fontanarosa
,
D.
, and
Ficarella
,
A.
,
2019
, “
Characterization of Unsteady Cavitating Flow Regimes Around a Hydrofoil, Based on an Extended Schnerr–Sauer Model Coupled With a Nucleation Model
,”
Int. J. Multiphase Flow
,
115
, pp.
158
180
.10.1016/j.ijmultiphaseflow.2019.03.025
65.
De Giorgi
,
M.
,
Fontanarosa
,
D.
, and
Ficarella
,
A.
,
2018
, “
Characterization of Cavitating Flow regimes in an Internal Sharp-Edged Orifice by Means of Proper Orthogonal Decomposition
,”
Exp. Therm. Fluid Sci.
,
93
, pp.
242
256
.10.1016/j.expthermflusci.2018.01.001
You do not currently have access to this content.