Abstract

Detailed near- and far-field acoustic measurements were conducted for two circular stepped nozzles with 30 deg and 60 deg design inclinations at over- and perfectly-expanded supersonic jet flow conditions and compared to those for a circular nonstepped nozzle. Far-field acoustic results show that stepped nozzles play an insignificant role in altering noise emissions at perfectly expanded condition. At an over-expanded condition, however, the longer stepped nozzle produces significant noise reductions at the sideline and upstream quadrants, while the shorter stepped nozzle does not. Noise spectra analysis and Schlieren visualizations show that noise reduction can be primarily attributed to mitigations in the broadband shock-associated noise (BSAN), due to the ability of the longer stepped nozzle in suppressing shock strengths at downstream region. Near-field acoustic measurements reveal that the source region, as well as the intensity of turbulent and shock noises, are highly sensitive to the stepped nozzle configuration. Furthermore, BSAN seems to be eliminated by the longer stepped nozzle in near-field region due to the shock structure modifications.

References

References
1.
Tam
,
C. K. W.
,
1995
, “
Supersonic Jet Noise
,”
Annu. Rev. Fluid Mech.
,
27
(
1
), pp.
17
43
.10.1146/annurev.fl.27.010195.000313
2.
Tam
,
C. K. W.
,
Michel
,
G.
, and
Seiner
,
J.
,
1996
, “
On the Two Components of Turbulent Mixing Noise From Supersonic Jets
,”
AIAA Paper 96-1716
.10.2514/6.1996-1716
3.
Tam
,
C. K. W.
,
2009
, “
Mach Wave Radiation From High-Speed Jets
,”
AIAA J.
,
47
(
10
), pp.
2440
2448
.10.2514/1.42644
4.
Harper-Bourne
,
M.
, and
Fisher
,
M. J.
,
1973
, “
The Noise From Shock Waves in Supersonic Jets
,”
AGARD Conference on Noise Mechanisms
,
Brussels, Belgium
, Sept. 19–21, Paper No.
11
1
.
5.
Tam
,
C. K.
,
Seiner
,
J. M.
, and
Yu
,
J. C.
,
1986
, “
Proposed Relationship Between Broadband Shock Associated Noise and Screech Tones
,”
J. Sound Vib.
,
110
(
2
), pp.
309
321
.10.1016/S0022-460X(86)80212-7
6.
Mengle
,
V.
,
Ganz
,
U.
,
Nesbitt
,
E.
, and
Bultemeier
,
E.
,
2006
, “
Flight Test Results for Uniquely Tailored Propulsion-Airframe Aeroacoustic Chevrons: Shockcell Noise
,”
AIAA Paper No. 2006-2439
.10.2514/6.2006-2439
7.
Bultemeier
,
E.
,
Ganz
,
U.
,
Premo
,
J.
, and
Nesbitt
,
E.
,
2006
, “
Effect of Uniform Chevrons on Cruise Shockcell Noise
,”
AIAA Paper No. 2006-2440
.10.2514/6.2006-2440
8.
Wlezien
,
R. W.
, and
Kibens
,
V.
,
1988
, “
Influence of Nozzle Asymmetry on Supersonic Jets
,”
AIAA J.
,
26
(
1
), pp.
27
33
.10.2514/3.9846
9.
Viswanathan
,
K.
,
2005
, “
Nozzle Shaping for Reduction of Jet Noise From Single Jets
,”
AIAA J.
,
43
(
5
), pp.
1008
1022
.10.2514/1.11331
10.
Viswanathan
,
K.
, and
Czech
,
M.
,
2011
, “
Adaptation of the Bevelled Nozzle for High-Speed Jet Noise Reduction
,”
AIAA J.
,
49
(
5
), pp.
932
944
.10.2514/1.J050409
11.
Wu
,
J.
,
Lim
,
H. D.
,
Wei
,
X. F.
,
New
,
T. H.
, and
Cui
,
Y. D.
,
2019
, “
Flow Characterization of Supersonic Jets Issuing From Double-Beveled Nozzles
,”
ASME J. Fluid Eng.
,
141
(
1
), p.
011202
.10.1115/1.4040447
12.
Wei
,
X. F.
,
Mariani
,
R.
,
Chua
,
L. P.
,
Lim
,
H. D.
,
Lu
,
Z. B.
,
Cui
,
Y. D.
, and
New
,
T. H.
,
2019
, “
Mitigation of Under-Expanded Supersonic Jet Noise Through Stepped Nozzles
,”
J. Sound Vib.
,
459
, p.
114875
.10.1016/j.jsv.2019.114875
13.
Wu
,
J.
, and
New
,
T. H.
,
2017
, “
An Investigation on Supersonic Bevelled Nozzle Jets
,”
Aerosp. Sci. Technol.
,
63
, pp.
278
293
.10.1016/j.ast.2017.01.003
14.
Viswanathan
,
K.
,
2006
, “
Instrumentation Considerations for Accurate Jet Noise Measurements
,”
AIAA J.
,
44
(
6
), pp.
1137
1149
.10.2514/1.13518
15.
Munday
,
D.
,
Gutmark
,
E.
,
Liu
,
J.
, and
Kailasanath
,
K.
,
2011
, “
Flow Structure and Acoustics of Supersonic Jets From Conical Convergent-Divergent Nozzles
,”
Phys. Fluids
,
23
(
11
), p.
116102
.10.1063/1.3657824
16.
Kuo
,
C. W.
,
Veltin
,
J.
, and
McLaughlin
,
D. K.
,
2014
, “
Acoustic Measurements of Models of Military Style Supersonic Nozzle Jets
,”
Chin. J. Aeronaut.
,
27
(
1
), pp.
23
33
.10.1016/j.cja.2013.12.006
17.
Mariani
,
R.
,
Zang
,
B.
,
Lim
,
H. D.
,
Vevek
,
U. S.
,
New
,
T. H.
, and
Cui
,
Y. D.
,
2019
, “
A Comparative Study on the Use of Calibrated and Rainbow Schlieren Techniques in Axisymmetric Supersonic Jets
,”
Flow Meas. Instrum.
,
66
, pp.
218
228
.10.1016/j.flowmeasinst.2019.01.007
18.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.10.1016/0894-1777(88)90043-X
19.
Tanna
,
H. K.
,
1977
, “
An Experimental Study of Jet Noise—Part II: Shock Associated Noise
,”
J. Sound Vib
,.,
50
(
3
), pp.
429
444
.10.1016/0022-460X(77)90494-1
20.
Tam
,
C. K. W.
, and
Tanna
,
H. K.
,
1982
, “
Shock Associated Noise of Supersonic Jets From Convergent-Divergent Nozzles
,”
J. Sound Vib.
,
81
(
3
), pp.
337
358
.10.1016/0022-460X(82)90244-9
21.
Tam
,
C. K. W.
,
Viswanathan
,
K.
,
Ahuja
,
K. K.
, and
Panda
,
J.
,
2008
, “
The Sources of Jet Noise: Experimental Evidence
,”
J. Fluid Mech.
,
615
, pp.
253
292
.10.1017/S0022112008003704
22.
Harker
,
B. M.
,
Gee
,
K. L.
,
Neilsen
,
T. B.
,
Wall
,
A. T.
,
McInerny
,
S. A.
, and
James
,
M. M.
,
2013
, “
On Autocorrelation Analysis of Jet Noise
,”
J. Acoust. Soc. Am.
,
133
(
6
), pp.
EL458
EL464
.10.1121/1.4802913
23.
Norum
,
T. D.
, and
Seiner
,
J. M.
,
1980
, “
Location and Propagation of Shock Associated Noise From Supersonic Jets
,”
AIAA Paper No. 80-0983
.10.2514/6.1980-983
24.
Seiner
,
J.
, and
Yu
,
J. C.
,
1984
, “
Acoustic Near-Field Properties Associated With Broadband Shock Noise
,”
AIAA J.
,
22
(
9
), pp.
1207
1215
.10.2514/3.8762
25.
Callender
,
B.
,
Gutmark
,
E.
, and
Martens
,
S.
,
2008
, “
A near-Field Investigation of Chevron Nozzle Mechanisms
,”
AIAA J.
,
46
(
1
), pp.
36
45
.10.2514/1.17720
You do not currently have access to this content.