Abstract

Corrugated pipes (CP) have regularly shaped and spaced cavities on their internal walls that can induce dynamic changes in the flow, such as increased pressure drops. Offshore petroleum production pipelines are an example of an industrial application of CPs, known as flexible lines. Slug flow is the most challenging flow pattern in those lines due to its complex hydrodynamics. A number of previous studies proposed correlations to predict the two-phase flow pressure drops in smooth pipes (SPs). However, limited researches have evaluated the pressure drops associated with liquid–gas slug flow in CPs. In this work, experiments to analyze the pressure drops in horizontal air–water slug flow under different configurations of CPs were carried out. The tests were performed in three different CP internal diameters (IDs) (26, 40, and 50 mm) with different cavity widths (1.2, 1.6, and 2.0 mm). The effects of the internal diameters and the cavity widths on the pressure drops associated with slug flow were analyzed. Results demonstrated that the pressure drops increase with increasing cavity widths. The experimental data were fitted and a pressure drop correlation using the concept of multiplier factor was proposed. Comparisons between predictions and the experimental data proved to be within ±10% accuracy.

References

References
1.
Dall'Acqua
,
D.
,
Terenzi
,
A.
,
Leporini
,
M.
,
D'Alessandro
,
V.
,
Giacchetta
,
G.
, and
Marchetti
,
B.
,
2017
, “
A New Tool for Modelling the Decompression Behavior of CO2 With Impurities Using the Peng-Robison Equation of State
,”
Appl. Energy
,
206
, pp.
1432
1445
.10.1016/j.apenergy.2017.09.118
2.
Xu
,
Q.
,
Zhou
,
H.
,
Zhu
,
Y.
,
Cao
,
Y.
,
Huang
,
B.
,
Li
,
W.
, and
Guo
,
L.
,
2020
, “
Study of Identification of Global Flow Regime in a Long Pipeline
,”
Powder Technol.
,
362
, pp.
507
516
.10.1016/j.powtec.2019.12.018
3.
Weisman
,
J.
,
Duncan
,
D.
,
Gibson
,
J.
, and
Crawford
,
T.
,
1979
, “
Effects of Fluid Properties and Pipe Diameter on Two-Phase Flow Patterns in Horizontal Lines
,”
Int. J. Multiphase Flow
,
5
(
6
), pp.
437
462
.10.1016/0301-9322(79)90031-4
4.
Saisorn
,
S.
, and
Wongwises
,
S.
,
2010
, “
The Effects of Channel Diameter on Flow Pattern, Void Fraction and Pressure Drop of Two-Phase Air-Water Flow in Circular Micro-Channels
,”
Exp. Therm. Fluid Sci.
,
34
(
4
), pp.
454
462
.10.1016/j.expthermflusci.2009.02.006
5.
Zhang
,
T.
,
Cao
,
B.
,
Fan
,
Y.
,
Gonthier
,
Y.
,
Luo
,
L.
, and
Wang
,
S.
,
2011
, “
Gas-Liquid Flow in Circular Microchannel. Part I: Influence of Liquid Physical Properties and Channel Diameter on Flow Patterns
,”
Chem. Eng. Sci.
,
66
(
23
), pp.
5791
5803
.10.1016/j.ces.2011.07.035
6.
Baghernejad
,
Y.
,
Hajidavalloo
,
E.
,
Zadeh
,
S. M. H.
, and
Behbahani-Nejad
,
M.
,
2019
, “
Effect of Pipe Rotation on Flow Pattern and Pressure Drop of Horizontal Two-Phase Flow
,”
Int. J. Multiphase Flow
,
111
, pp.
101
111
.10.1016/j.ijmultiphaseflow.2018.11.012
7.
Michaelides
,
E. E.
,
Crowe
,
C. T.
, and
Schwarzkopf
,
J. D.
,
2017
,
Multiphase Flow Handbook
,
Taylor & Francis
,
New York
.
8.
Taitel
,
Y.
, and
Dukler
,
A. E.
,
1976
, “
A Model for Predicting Flow Regime Transitions in Horizontal and Near Horizontal Gas-Liquid Flow
,”
AIChE J.
,
22
(
1
), pp.
47
55
.10.1002/aic.690220105
9.
Lin
,
P. Y.
, and
Hanratty
,
T. J.
,
1986
, “
Prediction of the Initiation of Slugs With Linear Stability Theory
,”
Int. J. Multiphase Flow
,
12
(
1
), pp.
79
98
.10.1016/0301-9322(86)90005-4
10.
Hurlburt
,
E. T.
, and
Hanratty
,
T. J.
,
2002
, “
Prediction of the Transition From Stratified to Slug and Plug Flow for Long Pipes
,”
Int. J. Multiphase Flow
,
28
(
5
), pp.
707
729
.10.1016/S0301-9322(02)00009-5
11.
Wallis
,
G.
,
1969
,
One Dimensional Two Phase Flow
,
McGraw-Hill
,
New York
.
12.
Dukler
,
A. E.
, and
Hubbard
,
M. G.
,
1975
, “
A Model for Gas-Liquid Slug Flow in Horizontal and Near Horizontal Tubes
,”
Ind. Eng. Chem. Fundam.
,
14
(
4
), pp.
337
347
.10.1021/i160056a011
13.
Taitel
,
Y.
, and
Barnea
,
D.
,
1990
, “
A Consistent Approach for Calculating Pressure Drop in Inclined Slug Flow
,”
Chem. Eng. Sci.
,
45
(
5
), pp.
1199
1206
.10.1016/0009-2509(90)87113-7
14.
Pedersen
,
S.
,
Durdevic
,
P.
, and
Yang
,
Z.
,
2017
, “
Challenges in Slug Modeling and Control for Offshore Oil and Gas Productions: A Review Study
,”
Int. J. Multiphase Flow
,
88
, pp.
270
284
.10.1016/j.ijmultiphaseflow.2016.07.018
15.
Wang
,
L.
,
Yang
,
Y.
,
Li
,
Y.
, and
Wang
,
Y.
,
2018
, “
Dynamic Behaviors of Horizontal Gas-Liquid Pipes Subjected to Hydrodynamic Slug Flow: Modelling and Experiments
,”
Int. J. Pressure Vessels Piping
,
161
, pp.
50
57
.10.1016/j.ijpvp.2018.02.005
16.
Lockhart
,
R. M.
, and
Martinelli
,
R. C.
,
1949
, “
Proposed Correlation of Data for Isothermal Two-Phase, Two-Component Flow in Pipes
,”
Chem. Eng. Prog.
,
45
(
1
), pp.
39
48
.
17.
Chisholm
,
D.
,
1967
, “
A Theoretical Basis for the Lockhart-Martinelli Correlation for Two-Phase Flow
,”
Int. J. Heat Mass Transfer
,
10
(
12
), pp.
1767
1778
.10.1016/0017-9310(67)90047-6
18.
Muzychka
,
Y. S.
, and
Awad
,
M. M.
,
2010
, “
Asymptotic Generalization of the Lockhart-Martinelli Method for Two Phase Flows
,”
ASME J. Fluids Eng.
,
132
(
3
), p.
031302
.10.1115/1.4001157
19.
Sun
,
L.
, and
Mishima
,
K.
,
2009
, “
Evaluation Analysis of Prediction Methods for Two-Phase Flow Pressure Drop in Mini-Channels
,”
Int. J. Multiphase Flow
,
35
(
1
), pp.
47
54
.10.1016/j.ijmultiphaseflow.2008.08.003
20.
Vaze
,
M. J.
, and
Banerjee
,
J.
,
2013
, “
A Modified Chisholm's Interaction Factor for Air-Water Two-Phase Flow Through a Horizontal Pipe
,”
Multiph. Sci. Technol.
,
25
(
1
), pp.
57
78
.10.1615/MultScienTechn.v25.i1.30
21.
Shemer
,
L.
,
2003
, “
Hydrodynamic and Statistical Parameters of Slug Flow
,”
Int. J. Heat Fluid Flow
,
24
(
3
), pp.
334
344
.10.1016/S0142-727X(03)00024-9
22.
Li
,
G.
,
Yao
,
Y.
, and
Dong
,
S.
,
2007
, “
A Physical Model for Predicting the Pressure Drop of Gas-Liquid Slug Flow in Horizontal Pipes
,”
J. Hydrodyn.
,
19
(
6
), pp.
736
742
.10.1016/S1001-6058(08)60011-6
23.
Shannak
,
B. A.
,
2008
, “
Frictional Pressure Drop of Gas Liquid Two-Phase Flow in Pipes
,”
Nucl. Eng. Des.
,
238
(
12
), pp.
3277
3284
.10.1016/j.nucengdes.2008.08.015
24.
Losi
,
G.
,
Arnone
,
D.
,
Correra
,
S.
, and
Poesio
,
P.
,
2016
, “
Modelling and Statistical Analysis of High Viscosity Oil/Air Slug Flow Characteristics in a Small Diameter Horizontal Pipe
,”
Chem. Eng. Sci.
,
148
, pp.
190
202
.10.1016/j.ces.2016.04.005
25.
Liang
,
G.
,
Mascarenhas
,
N.
, and
Mudawar
,
I.
,
2017
, “
Analytical and Experimental Determination of Slug Flow Parameters, Pressure Drop and Heat Transfer Coefficient in Micro-Channel Condensation
,”
Int. J. Heat Mass Transfer
,
111
, pp.
1218
1233
.10.1016/j.ijheatmasstransfer.2017.04.045
26.
Quan
,
X.
,
Cheng
,
P.
, and
Wu
,
H.
,
2008
, “
An Experimental Investigation on Pressure Drop of Steam Condensing in Silicon Microchannels
,”
Int. J. Heat Mass Transfer
,
51
(
21–22
), pp.
5454
5458
.10.1016/j.ijheatmasstransfer.2008.03.028
27.
Li
,
X.
, and
Hibiki
,
T.
,
2017
, “
Frictional Pressure Drop Correlation for Two-Phase Flows in Mini and Micro Single-Channels
,”
Int. J. Multiphase Flow
,
90
, pp.
29
45
.10.1016/j.ijmultiphaseflow.2016.12.003
28.
Cavallini
,
A.
,
Del Col
,
D.
,
Matkovic
,
M.
, and
Rossetto
,
L.
,
2009
, “
Frictional Pressure Drop During Vapour-Liquid Flow in Minichannels: Modelling and Experimental Evaluation
,”
Int. J. Heat Fluid Flow
,
30
(
1
), pp.
131
139
.10.1016/j.ijheatfluidflow.2008.09.003
29.
Kurimoto
,
R.
,
Nakazawa
,
K.
,
Minagawa
,
H.
, and
Yasuda
,
T.
,
2017
, “
Prediction Models of Void Fraction and Pressure Drop for Gas-Liquid Slug Flow in Microchannels
,”
Exp. Therm. Fluid Sci.
,
88
, pp.
124
133
.10.1016/j.expthermflusci.2017.05.014
30.
Xu
,
Y.
,
Fang
,
X.
,
Su
,
X.
,
Zhou
,
Z.
, and
Chen
,
W.
,
2012
, “
Evaluation of Friction Pressure Drop Correlations for Two-Phase Flow in Pipes
,”
Nucl. Eng. Des.
,
253
, pp.
86
97
.10.1016/j.nucengdes.2012.08.007
31.
Sun
,
M.
, and
Zeng
,
M.
,
2018
, “
Investigation on Turbulent Flow and Heat Transfer Characteristics and Technical Economy of Corrugated Tube
,”
Appl. Thermal Eng.
,
129
, pp.
1
11
.10.1016/j.applthermaleng.2017.09.136
32.
Laohalertdecha
,
S.
, and
Wongwises
,
S.
,
2011
, “
Condensation Heat Transfer and Flow Characteristics of R-134a Flowing Through Corrugated Tubes
,”
Int. J. Heat Mass Transfer
,
54
(
11–12
), pp.
2673
2682
.10.1016/j.ijheatmasstransfer.2010.12.034
33.
Bilen
,
K.
,
Cetin
,
M.
,
Gul
,
H.
, and
Balta
,
T.
,
2009
, “
The Investigation of Groove Geometry Effect on Heat Transfer for Internally Grooved Tubes
,”
Appl. Therm. Eng.
,
29
(
4
), pp.
753
761
.10.1016/j.applthermaleng.2008.04.008
34.
Dalkiliç
,
A. S.
,
Çebi
,
A.
,
Acikgoz
,
O.
, and
Wongwises
,
S.
,
2017
, “
Prediction of Friction Pressure Drop of R123a During Condensation Inside Smooth and Corrugated Tubes
,”
Int. Commun. Heat Mass Transfer
,
88
, pp.
183
193
.10.1016/j.icheatmasstransfer.2017.08.011
35.
Ohira
,
K.
,
Okuyama
,
J.
,
Nakagomi
,
K.
, and
Takahashi
,
K.
,
2012
, “
Pressure Drop of Slush Nitrogen Flow in Converging-Diverging Pipes and Corrugated Pipes
,”
Cryogenics
,
52
(
12
), pp.
771
783
.10.1016/j.cryogenics.2012.09.001
36.
Andrade
,
F.
,
Moita
,
A. S.
,
Nikulin
,
A.
,
Moreira
,
A. L. A.
, and
Santos
,
H.
,
2019
, “
Experimental Investigation on Heat Transfer and Pressure Drop of Internal Flow in Corrugated Tubes
,”
Int. J. Heat Mass Transfer
,
140
, pp.
940
955
.10.1016/j.ijheatmasstransfer.2019.06.025
37.
Naidek
,
B. P.
,
Kashiwakura
,
L. Y.
,
Alves
,
R. F.
,
Bassani
,
C. L.
,
Stel
,
H.
, and
Morales
,
R. E. M.
,
2017
, “
Experimental Analysis of Horizontal Liquid-Gas Slug Flow Pressure Drop in D-Type Corrugated Pipes
,”
Exp. Therm. Fluid Sci.
,
81
, pp.
234
243
.10.1016/j.expthermflusci.2016.10.016
38.
Jiménez
,
J.
,
2004
, “
Turbulent Flows Over Rough Walls
,”
Annu. Rev. Fluid Mech.
,
36
, pp.
173
196
.10.1146/annurev.fluid.36.050802.122103
39.
Stel
,
H.
,
Franco
,
A. T.
,
Junqueira
,
S. L. M.
,
Erthal
,
R. H.
,
Mendes
,
R.
,
Gonçalves
,
M. A. L.
, and
Morales
,
R. E. M.
,
2012
, “
Turbulent Flow in D-Type Corrugated Pipes: Flow Pattern and Friction Factor
,”
ASME J. Fluids Eng
,.
134
, p.
121202
.10.1115/1.4007899
40.
Leonardi
,
S.
,
Orlandi
,
P.
, and
Antonia
,
R. A.
,
2007
, “
Properties of d- and k-Type Roughness in a Turbulent Channel Flow
,”
Phys. Fluids
,
19
(
12
), p.
125101
.10.1063/1.2821908
41.
Shannak
,
B.
,
Damseh
,
R.
,
Al-Odat
,
M.
,
Al-Shannag
,
M.
, and
Azzi
,
A.
,
2010
, “
Two-Phase Flow Through Corrugated U-Tube
,”
J. Mech. Eng. Sci.
,
224
(
11
), pp.
2408
2417
.10.1243/09544062JMES1871
42.
Calomino
,
F.
,
Tafarojnoruz
,
A.
, Ph.D., M.ASCE
Marchis
,
M.
,
De
,
Gaudio
,
R.
, and
Napoli
,
E.
,
2015
, “
Experimental and Numerical Study on the Flow Field and Friction Factor in a Pressurized Corrugated Pipe
,”
J. Hydraul. Eng.
,
141
(
11
), p.
04015027
.10.1061/(ASCE)HY.1943-7900.0001046
43.
Wang
,
W.
,
Zhang
,
Y.
,
Li
,
Y.
,
Han
,
H.
, and
Li
,
B.
,
2018
, “
Numerical Study on Fully-Developed Turbulent Flow and Heat Transfer in Inward Corrugated Tubes With Double-Objective Optimization
,”
Int. J. Heat Mass Transfer
,
120
, pp.
782
792
.10.1016/j.ijheatmasstransfer.2017.12.079
44.
Ruder
,
Z.
, and
Hanratty
,
T. J.
,
1990
, “
A Definition of Gas-Liquid Plug Flow in Horizontal Pipes
,”
Int. J. Multiphase Flow
,
16
(
2
), pp.
233
242
.10.1016/0301-9322(90)90056-O
45.
Fox
,
R. W.
,
Pritchard
,
P. J.
, and
McDonald
,
A. T.
,
2011
,
Fox and McDonald's Introduction to Fluid Mechanics
, 8th ed.,
Wiley
,
Hoboken, NJ
.
46.
Vicêncio
,
F. E. C.
,
Schneider
,
F. A.
,
Cozin
,
C.
,
Barbuto
,
F. A. A.
,
Silva
,
M. J.
, and
Morales
,
R. E. M.
,
2015
, “
An Experimental Characterization of Horizontal Gas-Liquid Slug Flow
,”
ASME
Paper No. IMECE2015-52064. 10.1115/IMECE2015-52064
47.
Hamad
,
F. A.
,
Faraji
,
F.
,
Santim
,
C. G. S.
,
Basha
,
N.
, and
Ali
,
Z.
,
2017
, “
Investigation of Pressure Drop in Horizontal Pipes With Different Diameters
,”
Int. J. Multiphase Flow
,
91
, pp.
120
129
.10.1016/j.ijmultiphaseflow.2017.01.007
48.
Lu
,
C.
,
Kong
,
R.
,
Qiao
,
S.
,
Larimer
,
J.
,
Kim
,
S.
,
Bajorek
,
S.
,
Tien
,
K.
, and
Hoxie
,
C.
,
2018
, “
Frictional Pressure Drop Analysis for Horizontal and Vertical Air-Water Two-Phase Flows in Different Pipe Sizes
,”
Nucl. Eng. Des.
,
332
, pp.
147
161
.10.1016/j.nucengdes.2018.03.036
You do not currently have access to this content.