Abstract

In this paper, a new correlation is developed to predict liquid/liquid separation dynamics with a focus on a water/oil mixture. The correlation employs a force balance on the droplets to predict the rising velocity of the oil phase. The effect of droplet coalescence on the droplet's rising velocity is investigated, and the new correlation predicts the coalescence rate based on the oil/water volume fraction, as well as the initial droplet diameter. To develop the correlation for droplet coalescence, a series of new numerical simulations of a batch oil/water separation process were conducted. An equivalent experiment was conducted, the results of which agree well with the numerical predictions (relative error of 13.39%). The new correlation can predict the rate of separation with a relative error of 6.35% compared to numerical predictions.

References

References
1.
Hansen
,
E. W.
,
2001
, “
Phenomenological Modelling and Simulation of Fluid Flow and Separation Behavior in Offshore Gravity Separators
,”
ASME-PVP
,
431
, pp.
23
30
.https://www.flow3d.com/wp-content/uploads/2014/08/Phenomeological-Modeling-and-Simulation-of-Fluid-Flow-and-Separation-Behaviour-in-Offshore-Gravity-Separators.pdf
2.
Zhang
,
Y.
,
Jiang
,
M.
,
Zhao
,
L.
, and
Li
,
F.
,
2009
, “
Design and Experimental Study of Hydrocyclone in Series and in Bridge of Downhole Oil/Water Separation System
,”
ASME Paper No. OMAE2009-79194
.10.1115/OMAE2009-79194
3.
Breisig
,
H.
,
Schmidt
,
M.
,
Wolff
,
H.
,
Jupke
,
A.
, and
Wessling
,
M.
,
2017
, “
Droplet-Based Liquid–Liquid Extraction Inside a Porous Capillary
,”
Chem. Eng. J.
,
307
, pp.
143
149
.10.1016/j.cej.2016.08.024
4.
Sleicher
,
C. A.
,
1959
, “
Axial Mixing and Extraction Efficiency
,”
AIChE J.
,
5
(
2
), pp.
145
149
.10.1002/aic.690050204
5.
Cheung
,
S. C.
,
Yeoh
,
G. H.
, and
Tu
,
J. Y.
,
2008
, “
Population Balance Modeling of Bubbly Flows Considering the Hydrodynamics and Thermomechanical Processes
,”
AIChE J.
,
54
(
7
), pp.
1689
1710
.10.1002/aic.11503
6.
Ramkrishna
,
D.
,
1985
, “
The Status of Population Balances
,”
Rev. Chem. Eng.
,
3
(
1
), pp.
49
95
.10.1515/REVCE.1985.3.1.49
7.
Nguemaha
,
V.
, and
Zhou
,
H. X.
,
2018
, “
Liquid-Liquid Phase Separation of Patchy Particles Illuminates Diverse Effects of Regulatory Components on Protein Droplet Formation
,”
Sci. Rep.
,
8
(
1
), pp.
1
11
.10.1038/s41598-018-25132-1
8.
Hyman
,
A. A.
,
Weber
,
C. A.
, and
Jülicher
,
F.
,
2014
, “
Liquid-Liquid Phase Separation in Biology
,”
Annu. Rev. Cell Dev. Biol.
,
30
(
1
), pp.
39
58
.10.1146/annurev-cellbio-100913-013325
9.
Zwicker
,
D.
,
Seyboldt
,
R.
,
Weber
,
C. A.
,
Hyman
,
A. A.
, and
Jülicher
,
F.
,
2017
, “
Growth and Division of Active Droplets Provides a Model for Protocells
,”
Nat. Phys.
,
13
(
4
), pp.
408
413
.10.1038/nphys3984
10.
Alberti
,
S.
,
Gladfelter
,
A.
, and
Mittag
,
T.
,
2019
, “
Considerations and Challenges in Studying Liquid-Liquid Phase Separation and Biomolecular Condensates
,”
Cell
,
176
(
3
), pp.
419
434
.10.1016/j.cell.2018.12.035
11.
Shakya
,
A.
,
Park
,
S.
,
Rana
,
N.
, and
King
,
J. T.
,
2019
, “
Liquid-Liquid Phase Separation of Histone Proteins in Cells: Role in Chromatin Organization
,”
Biophys. J.
,
118
(
3
), pp.
753
764
.10.1016/j.bpj.2019.12.022
12.
Melheim
,
J. A.
, and
Chiesa
,
M.
,
2006
, “
Simulation of Turbulent Electrocoalescence
,”
Chem. Eng. Sci.
,
61
(
14
), pp.
4540
4549
.10.1016/j.ces.2006.02.022
13.
Shinnar
,
R.
, and
Church
,
J. M.
,
1960
, “
Statistical Theories of Turbulence in Predicting Particle Size in Agitated Dispersions
,”
Ind. Eng. Chem.
,
52
(
3
), pp.
253
256
.10.1021/ie50603a036
14.
Tong
,
A. Y.
,
1996
, “
A Numerical Study on the Collision Behavior of Droplets
,”
ASME-FED
,
238
, pp.
397
402
.https://pdfs.semanticscholar.org/e2f4/7413f5f19eb9db13e2834326745245f158a6.pdf
15.
Lee
,
J. C.
, and
Hodgson
,
T. D.
,
1968
, “
Film Flow and Coalescence-I Basic Relations, Film Shape and Criteria for Interface Mobility
,”
Chem. Eng. Sci.
,
23
(
11
), pp.
1375
1397
.10.1016/0009-2509(68)89047-5
16.
Thoroddsen
,
S. T.
, and
Takehara
,
K.
,
2000
, “
The Coalescence Cascade of a Drop
,”
Phys. Fluids
,
12
(
6
), pp.
1265
1267
.10.1063/1.870380
17.
Belt
,
R.
, and
Simonin
,
O.
,
2010
, “
Quadrature Method of Moments for the Pdf Modeling of Droplet Coalescence in Turbulent Two-Phase Flows
,”
ASME Paper No. FEDSM2009-78095
.10.1115/FEDSM2009-78095
18.
Valentas
,
K. J.
, and
Amundson
,
N. R.
,
1966
, “
Breakage and Coalescence in Dispersed Phase Systems
,”
Ind. Eng. Chem. Fundam.
,
5
(
4
), pp.
533
542
.10.1021/i160020a018
19.
Jakobsen
,
H. A.
,
Lindborg
,
H.
, and
Dorao
,
C. A.
,
2005
, “
Modelling of Bubble Column Reactors: Progress and Limitations
,”
Ind. Eng. Chem. Res.
,
44
(
14
), pp.
5107
5151
.10.1021/ie049447x
20.
Howarth
,
W. J.
,
1964
, “
Coalescence of Drops in a Turbulent Flow Field
,”
Chem. Eng. Sci.
,
19
(
1
), pp.
33
38
.10.1016/0009-2509(64)85003-X
21.
Lehr
,
F.
,
Millies
,
M.
, and
Mewes
,
D.
,
2002
, “
Bubble‐Size Distributions and Flow Fields in Bubble Columns
,”
AIChE J.
,
48
(
11
), pp.
2426
2443
.10.1002/aic.690481103
22.
Howarth
,
W. J.
,
1967
, “
Measurement of Coalescence Frequency in an Agitated Tank
,”
AIChE J.
,
13
(
5
), pp.
1007
1013
.10.1002/aic.690130532
23.
Sovova
,
H.
,
1981
, “
Breakage and Coalescence of Drops in a Batch Stirred Vessel—II Comparison of Model and Experiments
,”
Chem. Eng. Sci.
,
36
(
9
), pp.
1567
1573
.10.1016/0009-2509(81)85117-2
24.
Alopaeus
,
V.
,
Koskinen
,
J.
,
Keskinen
,
K. I.
, and
Majander
,
J.
,
2002
, “
Simulation of the Population Balances for Liquid–Liquid Systems in a Nonideal Stirred Tank. Part 2—Parameter Fitting and the Use of the Multiblock Model for Dense Dispersions
,”
Chem. Eng. Sci.
,
57
(
10
), pp.
1815
1825
.10.1016/S0009-2509(02)00067-2
25.
Chesters
,
A.
,
1991
, “
Modelling of Coalescence Processes in Fluid-Liquid Dispersions: A Review of Current  Understanding
,”
Chem. Eng. Res. Des.
,
69
(
A4
), pp.
259
270
.
26.
Vaughn
,
M. W.
, and
Slattery
,
J. C.
,
1995
, “
Effects of Viscous Normal Stresses in Thin Draining Films
,”
Ind. Eng. Chem. Res.
,
34
(
10
), pp.
3185
3186
.10.1021/ie00037a001
27.
Podgórska
,
W.
, and
Bałdyga
,
J.
,
2001
, “
Scale-Up Effects on the Drop Size Distribution of Liquid–Liquid Dispersions in Agitated Vessels
,”
Chem. Eng. Sci.
,
56
(
3
), pp.
741
746
.10.1016/S0009-2509(00)00284-0
28.
Liu
,
S.
, and
Li
,
D.
,
1999
, “
Drop Coalescence in Turbulent Dispersions
,”
Chem. Eng. Sci.
,
54
(
23
), pp.
5667
5675
.10.1016/S0009-2509(99)00100-1
29.
Prince
,
M. J.
, and
Blanch
,
H. W.
,
1990
, “
Bubble Coalescence and Break‐Up in Air‐Sparged Bubble Columns
,”
AIChE J.
,
36
(
10
), pp.
1485
1499
.10.1002/aic.690361004
30.
Wang
,
T.
,
Wang
,
J.
, and
Jin
,
Y.
,
2005
, “
Population Balance Model for Gas-Liquid Flows: Influence of Bubble Coalescence and Breakup Models
,”
Ind. Eng. Chem. Res.
,
44
(
19
), pp.
7540
7549
.10.1021/ie0489002
31.
Sinaiski
,
E. G.
, and
Lapiga
,
E. J.
,
2007
, “
Separation of Multiphase
,”
Multicomponent Systems
,
Wiley
,
New York
.
32.
Estrade
,
J. P.
,
Carentz
,
H.
,
Lavergne
,
G.
, and
Biscos
,
Y.
,
1999
, “
Experimental Investigation of Dynamic Binary Collision of Ethanol Droplets–a Model for Droplet Coalescence and Bouncing
,”
Int. J. Heat Fluid Flow
,
20
(
5
), pp.
486
491
.10.1016/S0142-727X(99)00036-3
33.
Wang
,
F. C.
,
Yang
,
F.
, and
Zhao
,
Y. P.
,
2011
, “
Size Effect on the Coalescence-Induced Self-Propelled Droplet
,”
Appl. Phys. Lett.
,
98
(
5
), p.
053112
.10.1063/1.3553782
34.
Frising
,
T.
,
Noïk
,
C.
, and
Dalmazzone
,
C.
,
2006
, “
The Liquid/Liquid Sedimentation Process: From Droplet Coalescence to Technologically Enhanced Water/Oil Emulsion Gravity Separators: A Review
,”
J. Dispersion Sci. Technol.
,
27
(
7
), pp.
1035
1057
.10.1080/01932690600767098
35.
Noik
,
C.
,
Chen
,
J.
, and
Dalmazzone
,
C. S.
,
2006
, “
Electrostatic Demulsification on Crude Oil: A State-Of-the-Art Review
,” International Oil and Gas Conference and Exhibition in China. Society of Petroleum Engineers, Beijing, China, 2006, Dec. 5–7, pp. 1–12, Paper No.
SPE-103808
.10.2118/103808-MS
36.
Boxall
,
J. A.
,
Koh
,
C. A.
,
Sloan
,
E. D.
,
Sum
,
A. K.
, and
Wu
,
D. T.
,
2010
, “
Measurement and Calibration of Droplet Size Distributions in Water-in-Oil Emulsions by Particle Video Microscope and a Focused Beam Reflectance Method
,”
Ind. Eng. Chem. Res.
,
49
(
3
), pp.
1412
1418
.10.1021/ie901228e
37.
Narsimhan
,
G.
,
2004
, “
Model for Drop Coalescence in a Locally Isotropic Turbulent Flow Field
,”
J. Colloid Interface Sci.
,
272
(
1
), pp.
197
209
.10.1016/j.jcis.2003.11.057
38.
Patankar
,
S.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere
,
New York
.
39.
Fluent, 2009, “Fluent ANSYS, 12.0 User Guide,” ANSYS Inc., Lebanon, NH.
40.
Leonard
,
B. P.
,
1979
, “
A Stable and Accurate Convective Modelling Procedure Based on Quadratic Upstream Interpolation
,”
Comput. Methods Appl. Mech. Eng.
,
19
(
1
), pp.
59
98
.10.1016/0045-7825(79)90034-3
41.
Young
,
G. A. B.
,
Wakley
,
W. D.
,
Taggart
,
D. L.
,
Andrews
,
S. L.
, and
Worrell
,
J. R.
,
1994
, “
Oil-Water Separation Using Hydrocyclones: An Experimental Search for Optimum Dimensions
,”
J. Pet. Sci. Eng.
,
11
(
1
), pp.
37
50
.10.1016/0920-4105(94)90061-2
42.
Tan
,
Y. C.
,
Ho
,
Y. L.
, and
Lee
,
A. P.
,
2007
, “
Droplet Coalescence by Geometrically Mediated Flow in Microfluidic Channels
,”
Microfluid. Nanofluid.
,
3
(
4
), pp.
495
499
.10.1007/s10404-006-0136-1
43.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng.
,
75
(
1
), pp.
3
8
.10.1016/0894-1777(88)90043-X
44.
Sztukowski
,
D. M.
, and
Yarranton
,
H. W.
,
2005
, “
Oilfield Solids and Water-in-Oil Emulsion Stability
,”
J. Colloid Interface Sci.
,
285
(
2
), pp.
821
833
.10.1016/j.jcis.2004.12.029
45.
Kocherginsky
,
N. M.
,
Tan
,
C. L.
, and
Lu
,
W. F.
,
2003
, “
Demulsification of Water-in-Oil Emulsions Via Filtration Through a Hydrophilic Polymer Membrane
,”
J. Membr. Sci.
,
220
(
1–2
), pp.
117
128
.10.1016/S0376-7388(03)00223-0
You do not currently have access to this content.