Abstract

One of the fundamental phenomena associated with the transport of rigid particles by the fluid flow in narrow ducts and tubes is the Segre–Silberberg effect. Experimental observations show that a spherical particle transported by the fluid flow in a long channel occupies a position of equilibrium between the wall and the centerline of the channel. In this study, this effect was numerically investigated using a novel semi-implicit immersed boundary method based on the discrete forcing approach. A uniform Cartesian mesh is used for the duct, whereas a moving Lagrangian mesh is used to track the position of the particle. Unlike previous studies, both cases of the duct geometry are considered: a round tube and a flat channel. Good agreement is shown to the available theoretical and numerical results of other studies. The problem is described by two dimensionless parameters, the channel Reynolds number, and the relative particle diameter. Parametric studies to these parameters were carried out, showing fundamental dependencies of equilibrium position on Reynolds number from 20 to 500 and on relative particle diameter from 0.2 to 0.7. It is demonstrated that the position of equilibrium becomes closer to the wall with the increase of Reynolds number, as well as with the decrease of particle diameter. In addition, the dependence of particle velocity on its diameter is investigated. The obtained results are of both theoretical and practical interest, with possible applications ranging from proppant transport to the design of microfluidic devices.

References

References
1.
Hu
,
H.
,
Joseph
,
D.
, and
Crochet
,
M.
,
1992
, “
Direct Simulation of Fluid Particle Motions
,”
Theor. Comput. Fluid Dyn.
,
3
(
5
), pp.
285
306
.10.1007/BF00717645
2.
Hu
,
H.
,
1995
, “
Motion of a Circular Cylinder in a Viscous Liquid Between Parallel Plates
,”
Theor. Comput. Fluid Dyn.
,
7
(
6
), pp.
441
455
.10.1007/BF00418142
3.
Hu
,
H.
,
1996
, “
Direct Simulation of Flows of Solid-Liquid Mixtures
,”
Int. J. Multiphase Flow
,
22
(
2
), pp.
335
352
.10.1016/0301-9322(95)00068-2
4.
Fortes
,
A.
,
Joseph
,
D.
, and
Lundgren
,
T.
,
1987
, “
Nonlinear Mechanics of Fluidization of Beds of Spherical Particles
,”
J. Fluid Mech.
,
177
(
1
), pp.
467
483
.10.1017/S0022112087001046
5.
Glowinski
,
R.
,
Pan
,
T.
,
Hesla
,
T.
,
Joseph
,
D.
, and
Périaux
,
J.
,
2001
, “
A Fictitious Domain Approach to the Direct Numerical Simulation of Incompressible Viscous Flow Past Moving Rigid Bodies: Application to Particulate Flow
,”
J. Comput. Phys.
,
169
(
2
), pp.
363
426
.10.1006/jcph.2000.6542
6.
Feng
,
Z.-G.
, and
Michaelides
,
E.
,
2009
, “
Heat Transfer in Particulate Flows With Direct Numerical Simulation (DNS)
,”
Int. J. Heat Mass Transfer
,
52
(
3–4
), pp.
777
786
.10.1016/j.ijheatmasstransfer.2008.07.023
7.
Smagulov
,
S.
,
1979
, “
Fictitious Domain Method for the Navier–Stokes Equations (in Russian)
,” Preprint 68 of Computational Center of SB AS of USSR, Novosibirsk, pp.
1
22
.
8.
Glowinski
,
R.
,
Pan
,
T.-W.
,
Hesla
,
T.
, and
Joseph
,
D.
,
1999
, “
A Distributed Lagrange Multiplier/Fictitious Domain Method for Particulate Flows
,”
Int. J. Multiphase Flow
,
25
(
5
), pp.
755
794
.10.1016/S0301-9322(98)00048-2
9.
Glowinski
,
R.
,
Pan
,
T.-W.
,
Hesla
,
T.
,
Joseph
,
D.
, and
Périaux
,
J.
,
1999
, “
A Distributed Lagrange Multiplier/Fictitious Domain Method for Flows Around Moving Rigid Bodies: Application to Particulate Flow
,”
Int. J. Numer. Methods Fluids
,
30
(
8
), pp.
1043
1066
.10.1002/(SICI)1097-0363(19990830)30:8<1043::AID-FLD879>3.0.CO;2-Y
10.
Peskin
,
C.
,
1972
, “
Flow Patterns Around Heart Valves: A Numerical Method
,”
J. Comput. Phys.
,
10
(
2
), pp.
252
271
.10.1016/0021-9991(72)90065-4
11.
Patankar
,
N.
,
Singh
,
P.
,
Joseph
,
D.
,
Glowinski
,
R.
, and
Pan
,
T.-W.
,
2000
, “
A New Formulation of the Distributed Lagrange Multiplier/Fictitious Domain Method for Particulate Flows
,”
Int. J. Multiphase Flow
,
26
(
9
), pp.
1509
1524
.10.1016/S0301-9322(99)00100-7
12.
Wan
,
D.
, and
Turek
,
S.
,
2006
, “
Modeling of Liquid-Solid Flows With Large Number of Moving Particles by Multigrid Fictitious Boundary Method
,”
J. Hydrodyn. Ser. B
,
18
(
3
), pp.
93
100
.10.1016/S1001-6058(06)60037-1
13.
Wan
,
D.
, and
Turek
,
S.
,
2007
, “
Fictitious Boundary and Moving Mesh Methods for the Numerical Simulation of Rigid Particulate Flows
,”
J. Comput. Phys.
,
222
(
1
), pp.
28
56
.10.1016/j.jcp.2006.06.002
14.
Hashemi
,
Z.
,
Abouali
,
O.
, and
Ahmadi
,
G.
,
2017
, “
Direct Numerical Simulation of Particle-Fluid Interactions: A Review
,”
Iran. J. Sci. Technol., Trans. Mech. Eng.
,
41
(
1
), pp.
71
89
.10.1007/s40997-016-0035-3
15.
Saiki
,
E.
, and
Biringen
,
S.
,
1996
, “
Numerical Simulation of a Cylinder in Uniform Flow: Application of a Virtual Boundary Method
,”
J. Comput. Phys.
,
123
(
2
), pp.
450
465
.10.1006/jcph.1996.0036
16.
Lai
,
M.-C.
, and
Peskin
,
C.
,
2000
, “
An Immersed Boundary Method With Formal Second-Order Accuracy and Reduced Numerical Viscosity
,”
J. Comput. Phys.
,
160
(
2
), pp.
705
719
.10.1006/jcph.2000.6483
17.
Uhlmann
,
M.
,
2005
, “
An Immersed Boundary Method With Direct Forcing for the Simulation of Particulate Flows
,”
J. Comput. Phys.
,
209
(
2
), pp.
448
476
.10.1016/j.jcp.2005.03.017
18.
Kempe
,
D.
, and
Frohlich
,
J.
,
2012
, “
An Improved Immersed Boundary Method With Direct Forcing for the Simulation of Particle Laden Flows
,”
J. Comput. Phys.
,
231
(
9
), pp.
3663
3684
.10.1016/j.jcp.2012.01.021
19.
Breugem
,
W.
,
2012
, “
A Second-Order Accurate Immersed Boundary Method for Fully Resolved Simulations of Particle-Laden Flows
,”
J. Comput. Phys.
,
231
(
13
), pp.
4469
4498
.10.1016/j.jcp.2012.02.026
20.
Vowinckel
,
B.
,
Kempe
,
T.
, and
Fröhlich
,
J.
,
2014
, “
Fluid-Particle Interaction in Turbulent Open Channel Flow With Fully-Resolved Mobile Beds
,”
Adv. Water Resour.
,
72
, pp.
32
44
.10.1016/j.advwatres.2014.04.019
21.
Wang
,
S.
,
Vanella
,
J.
, and
Balaras
,
E.
,
2019
, “
A Hydrodynamic Stress Model for Simulating Turbulence/Particle Interactions With Immersed Boundary Methods
,”
J. Comput. Phys.
,
382
, pp.
240
263
.10.1016/j.jcp.2019.01.010
22.
Lucci
,
F.
,
Ferrante
,
A.
, and
Elghobashi
,
S.
,
2010
, “
Modulation of Isotropic Turbulence by Particles of Taylor Length-Scale Size
,”
J. Fluid Mech.
,
650
, pp.
5
55
.10.1017/S0022112009994022
23.
Segré
,
G.
, and
Silberberg
,
A.
,
1962
, “
Behaviour of Macroscopic Rigid Spheres in Poiseuille Flow. Part 2. Experimental Results and Interpretation
,”
J. Fluid Mech.
,
14
(
1
), pp.
136
157
.10.1017/S0022112062001111
24.
Tachibana
,
M.
,
1973
, “
On the Behaviour of a Sphere in the Laminar Tube Flows
,”
Rheol. Acta
,
12
(
1
), pp.
58
69
.10.1007/BF01526901
25.
Ho
,
B.
, and
Leal
,
L.
,
1974
, “
Inertial Migration of Rigid Spheres in Two-Dimensional Unidirectional Flows
,”
J. Fluid Mech.
,
65
(
2
), pp.
365
400
.10.1017/S0022112074001431
26.
Schonberg
,
J. A.
, and
Hinch
,
E. J.
,
1989
, “
Inertial Migration of a Sphere in Poiseuille Flow
,”
J. Fluid Mech.
,
203
, pp.
517
524
.10.1017/S0022112089001564
27.
Asmolov
,
E. S.
,
1999
, “
The Inertial Lift on a Spherical Particle in a Plane Poiseuille Flow at Large Channel Reynolds Number
,”
J. Fluid Mech.
,
381
, pp.
63
87
.10.1017/S0022112098003474
28.
Di Carlo
,
D.
,
Irimia
,
D.
,
Tompkins
,
R. G.
, and
Toner
,
M.
,
2007
, “
Continuous Inertial Focusing, Ordering, and Separation of Particles in Microchannels
,”
Proc. Natl. Acad. Sci.
,
104
(
48
), pp.
18892
18897
.10.1073/pnas.0704958104
29.
Yang
,
B.
,
Wang
,
J.
,
Joseph
,
D.
,
Hu
,
H.
,
Pan
,
T.-W.
, and
Glowinski
,
R.
,
2005
, “
Migration of a Sphere in Tube Flow
,”
J. Fluid Mech.
,
540
(
1
), p.
109
.10.1017/S0022112005005677
30.
Pan
,
T.-W.
, and
Glowinski
,
R.
,
2005
, “
Direct Simulation of the Motion of Neutrally Buoyant Balls in a Three-Dimensional Poiseuille Flow
,”
C. R. Méc.
,
333
(
12
), pp.
884
895
.10.1016/j.crme.2005.10.006
31.
Hu
,
H.
,
Patankar
,
N.
, and
Zhu
,
M.
,
2001
, “
Direct Numerical Simulations of Fluid-Solid Systems Using the Arbitrary Lagrangian-Eulerian Technique
,”
J. Comput. Phys.
,
169
(
2
), pp.
427
462
.10.1006/jcph.2000.6592
32.
Choi
,
C.
, and
Kim
,
C.
,
2010
, “
Inertial Migration and Multiple Equilibrium Positions of a Neutrally Buoyant Spherical Particle in Poiseuille Flow
,”
Korean J. Chem. Eng.
,
27
(
4
), pp.
1076
1086
.10.1007/s11814-010-0214-7
33.
Shao
,
X.
,
Yu
,
Z.
, and
Sun
,
B.
,
2008
, “
Inertial Migration of Spherical Particles in Circular Poiseuille Flow at Moderately High Reynolds Numbers
,”
Phys. Fluids
,
20
(
10
), p.
103307
.10.1063/1.3005427
34.
Uhlmann
,
M.
,
2006
, “
Experience With DNS of Particulate Flow Using a Variant of the Immersed Boundary Method
,”
European Conference on Computational Fluid Dynamics ECCOMAS CFD, Delft, The Netherlands, pp. 1–18
.
35.
Lashgari
,
I.
,
Ardekani
,
M.
,
Banerjee
,
I.
,
Russom
,
A.
, and
Brandt
,
L.
,
2017
, “
Inertial Migration of Spherical and Oblate Particles in Straight Ducts
,”
J. Fluid Mech.
,
819
, pp.
540
561
.10.1017/jfm.2017.189
36.
Asmolov
,
E.
,
Dubov
,
A.
,
Nizkaya
,
T.
,
Harting
,
J.
, and
Vinogradova
,
O.
,
2018
, “
Inertial Focusing of Finite-Size Particles in Microchannels
,”
J. Fluid Mech.
,
840
pp.
613
630
.10.1017/jfm.2018.95
37.
Griffith
,
B.
, and
Peskin
,
C.
,
2005
, “
On the Order of Accuracy of the Immersed Boundary Method: Higher Order Convergence Rates for Sufficiently Smooth Problems
,”
J. Comput. Phys.
,
208
(
1
), pp.
75
105
.10.1016/j.jcp.2005.02.011
38.
Cherny
,
S.
,
Sharov
,
S.
,
Skorospelov
,
V.
, and
Turuk
,
P.
,
2003
, “
Methods for Three-Dimensional Flows Computation in Hydraulic Turbines
,”
Russ. J. Numer. Anal. Math. Model.
,
18
(
2
), pp.
87
104
.10.1515/156939803766454356
39.
Matas
,
J.-P.
,
Morris
,
J. F.
, and
Guazzelli
,
É.
,
2004
, “
Inertial Migration of Rigid Spherical Particles in Poiseuille Flow
,”
J. Fluid Mech.
,
515
, pp.
171
195
.10.1017/S0022112004000254
You do not currently have access to this content.