Abstract

Erosion wear is a major problem for hydraulic turbines operating on rivers from the Himalaya Mountains. The runner is the most important energy conversion component but it suffers heavy damage due to direct contact with the sediment-laden water. In this research, the runner's physical erosion wear mechanism is revealed using numerical simulations and the results are compared with damaged runners from Francis turbines in the Jhimruk Hydroelectric Center (JHC). Simulations show that high erosive wear occurs near the blade outlet on the suction side, which is consistent with site observations. Because of the high relative velocity at the runner outlet, the high accretion rate appears to be directly responsible for the heavy erosion rate. The adjustment of the guide vanes is the main action available in real situation to change the operation condition of turbine and flow separation can easily occur under off-design conditions, causing interblade vortex production. The vortex guides particles to one location where they gather, producing high accretion rates and aggravating erosion wear. This implies that the interblade vortex is the main factor that induces severe erosive wear at the blade outlet. When the angle of the guide vanes is adjusted to provide the highest efficiency, the erosion rate can be greatly reduced.

References

References
1.
Thapa
,
B.
,
Shrestha
,
R.
,
Dhakal
,
P.
, and
Thapa
,
B. S.
,
2005
, “
Problems of Nepalese Hydropower Projects Due to Suspended Sediments
,”
Aquat. Ecosyst. Health Manage.
,
8
(
3
), pp.
251
257
.10.1080/14634980500218241
2.
Eltvik
,
M.
,
2009
, “
Sediment Erosion in Francis Turbines
,” Master's thesis, Norwegian University of Science and Technology, Trondheim, Norway.
3.
Koirala
,
R.
,
Thapa
,
B.
,
Neopane
,
H. P.
,
Zhu
,
B.
, and
Chhetry
,
B.
,
2016
, “
Sediment Erosion in Guide Vanes of Francis Turbine: A Case Study of Kaligandaki Hydropower Plant, Nepal
,”
Wear
,
362
, pp.
53
60
.10.1016/j.wear.2016.05.013
4.
Noon
,
A. A.
, and
Kim
,
M.-H.
,
2017
, “
Erosion Wear on Francis Turbine Components Due to Sediment Flow
,”
Wear
,
378–379
, pp.
126
135
.10.1016/j.wear.2017.02.040
5.
Padhy
,
M.
,
Thatoi
,
D.
, and
Acharya
,
A.
,
2012
, “
Effect of Shape of Silt Particles on Erosive Wear of Pelton Turbine Bucket
,”
IEEE-International Conference on Advances in Engineering, Science and Management
(
ICAESM-2012
), Nagapattinam, India, Mar. 30–31, pp.
19
24
.https://ieeexplore.ieee.org/document/6216228
6.
Goodwin
,
J.
,
Sage
,
W.
, and
Tilly
,
G.
,
1969
, “
Study of Erosion by Solid Particles
,”
Proc. Inst. Mech. Eng.
,
184
(
1
), pp.
279
292
.10.1243/PIME_PROC_1969_184_024_02
7.
Bardal
,
E.
,
2004
, “
Corrosion and Protection
,” Springer-Verlag, London, UK.
8.
Desale
,
G. R.
,
Gandhi
,
B. K.
, and
Jain
,
S.
,
2006
, “
Effect of Erodent Properties on Erosion Wear of Ductile Type Materials
,”
Wear
,
261
(
7–8
), pp.
914
921
.10.1016/j.wear.2006.01.035
9.
Masoodi
,
J. H.
, and
Harmain
,
G.
,
2017
, “
A Methodology for Assessment of Erosive Wear on a Francis Turbine Runner
,”
Energy
,
118
, pp.
644
657
.10.1016/j.energy.2016.10.095
10.
Duan
,
C. G.
, and
Karelin
,
V. Y.
,
2002
,
Abrasive Erosion and Corrosion of Hydraulic Machinery
,
World Scientific
, Singapore.
11.
Natsume
,
M.
,
Hayashi
,
Y.
,
Akebono
,
H.
,
Kato
,
M.
, and
Sugeta
,
A.
,
2010
, “
Fatigue Properties and Crack Propagation Behavior of Stainless Cast Steel for Turbine Runner of Hydraulic Power Generation
,”
Procedia Eng.
,
2
(
1
), pp.
1273
1281
.10.1016/j.proeng.2010.03.138
12.
Chitrakar
,
S.
,
Neopane
,
H. P.
, and
Dahlhaug
,
O. G.
,
2018
, “
A Review on Sediment Erosion Challenges in Hydraulic Turbines
,”
Sedimentation Engineering
, Intech Open, London,UK, p.
9
.
13.
Brekke
,
H.
,
Wu
,
Y.
, and
Cai
,
B.
,
2002
, “
Design of Hydraulic Machinery Working in Sand Laden Water
,”
Abrasive Erosion and Corrosion of Hydraulic Machinery
,
Imperial College Press
, London, UK.
14.
Thapa
,
B. S.
,
Dahlhaug
,
O. G.
, and
Thapa
,
B.
,
2017
, “
Sediment Erosion Induced Leakage Flow From Guide Vane Clearance Gap in a Low Specific Speed Francis Turbine
,”
Renewable Energy
,
107
, pp.
253
261
.10.1016/j.renene.2017.01.045
15.
Thapa
,
B. S.
,
Thapa
,
B.
, and
Dahlhaug
,
O. G.
,
2012
, “
Empirical Modelling of Sediment Erosion in Francis Turbines
,”
Energy
,
41
(
1
), pp.
386
391
.10.1016/j.energy.2012.02.066
16.
Thapa
,
B. S.
,
Thapa
,
B.
,
Eltvik
,
M.
,
Gjosater
,
K.
, and
Dahlhaug
,
O. G.
,
2012
, “
Optimizing Runner Blade Profile of Francis Turbine to Minimize Sediment Erosion
,”
IOP Conf. Ser.: Earth Environ. Sci.
,
15
, p.
032052
.10.1088/1755-1315/15/3/032052
17.
Thapa
,
B. S.
,
Gjosater
,
K.
,
Eltvik
,
M.
,
Dahlhaug
,
O. G.
, and
Thapa
,
B
,
2012
, “
Effects of Turbine Design Parameters on Sediment Erosion of Francis Runner
,”
Second International Conference on the Developments in Renewable Energy Technology
(
ICDRET 2012
), Dhaka, Bangladesh, Jan. 5–7, pp.
1
5
.https://ieeexplore.ieee.org/document/6153436
18.
Ruud
,
J.
,
2004
, “
Sediment Handling Problems Jhimruk Hydroelectric Center
,” Master's thesis,
Norwegian University of Science and Technology
, Trondheim, Norway.
19.
Pradhan
,
P.
,
Joshi
,
P.
,
Biswakarma
,
M.
, and
Stole Sediment
,
H.
,
2004
, “Sediment and
Thermodynamic Efficiency Measurement at Jhimruk Hydropower Plant, Nepal in Monsoon 2003
,”
Ninth International Symposium on River Sedimentation
, Hubei, China, pp.
12
17
.
20.
Neopane
,
H. P.
,
Dahlhaug
,
O. G.
, and
Thapa
,
B.
,
2007
, “
Alternative Design of a Francis Turbine for Sand Laden Water
,”
International Conference on Small Hydropower
, Sri Lanka, Oct. 22–24, pp.
22
24
.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.567.6672&rep=rep1&type=pdf
21.
Morsi
,
S.
, and
Alexander
,
A.
,
1972
, “
An Investigation of Particle Trajectories in Two-Phase Flow Systems
,”
J. Fluid Mech.
,
55
(
2
), pp.
193
208
.10.1017/S0022112072001806
22.
Messa
,
G. V.
, and
Malavasi
,
S.
,
2017
, “
The Effect of Sub-Models and Parameterizations in the Simulation of Abrasive Jet Impingement Tests
,”
Wear
,
370
, pp.
59
72
.10.1016/j.wear.2016.10.022
23.
Gosman
,
A.
, and
Loannides
,
E.
,
1983
, “
Aspects of Computer Simulation of Liquid-Fueled Combustors
,”
J. Energy
,
7
(
6
), pp.
482
490
.10.2514/3.62687
24.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
25.
Zhang
,
Y.
,
Reuterfors
,
E.
,
McLaury
,
B. S.
,
Shirazi
,
S.
, and
Rybicki
,
E.
,
2007
, “
Comparison of Computed and Measured Particle Velocities and Erosion in Water and Air Flows
,”
Wear
,
263
(
1–6
), pp.
330
338
.10.1016/j.wear.2006.12.048
26.
Mansouri
,
A.
,
Arabnejad
,
H.
,
Karimi
,
S.
,
Shirazi
,
S. A.
, and
McLaury
,
B. S.
,
2015
, “
Improved CFD Modeling and Validation of Erosion Damage Due to Fine Sand Particles
,”
Wear
,
338
, pp.
339
350
.10.1016/j.wear.2015.07.011
27.
Edwards
,
J.
,
McLaury
,
B.
, and
Shirazi
,
S.
,
2000
, “
Evaluation of Alternative Pipe Bend Fittings in Erosive Service
,”
ASME
Paper No. FEDSM2000-11245.10.1115/ FEDSM2000-11245
28.
Hunt
,
J. C.
,
Wray
,
A. A.
, and
Moin
,
P.
,
1988
, “
Eddies, Streams, and Convergence Zones in Turbulent Flows
,” 1988 Summer Program of the Center for Turbulence Research, NASA Ames/Standford University, pp.
193
207
.
29.
Jeong
,
J.
, and
Hussain
,
F.
,
1995
, “
On the Identification of a Vortex
,”
J. Fluid Mech.
,
285
(
1
), pp.
69
94
.10.1017/S0022112095000462
30.
Khanal
,
K.
,
Neopane
,
H. P.
,
Rai
,
S.
,
Thapa
,
M.
,
Bhatt
,
S.
, and
Shrestha
,
R.
,
2016
, “
A Methodology for Designing Francis Runner Blade to Find Minimum Sediment Erosion Using CFD
,”
Renewable Energy
,
87
, pp.
307
316
.10.1016/j.renene.2015.10.023
You do not currently have access to this content.