Abstract

Cryogenic liquid turbine expanders have emerged quite recently as a replacement of J–T valve for enhancing energy efficiency of industrial systems, such as air separation units (ASUs) and Supercritical Compressed Air Energy Storage systems. In the liquid turbine expander, the rotating impeller-induced swirling flow and cavitation are essentially significant and intensive, which requests some in-depth work toward a thorough understanding flow physics and then effective attenuation. This study aims at effectively mitigating the swirling flow and cavitation. The entropy production analysis method (EPAM) is proposed to characterize the swirling flow and cavitation. It is then incorporated with the improved cavitation and turbulence models and validated through the simulation of the Hord's liquid nitrogen hydrofoil. To mitigate the swirling flow and subsequent cavitation, the design optimization method is developed, in which a novel optimization objective function is constituted by incorporating the local entropy production rate and vapor volume fraction to capture the mechanical energy dissipation and cryogenic cavitating flow physics; the non-uniform relational B-Splines and free form deformation (NURBS–FFD) parametric method is used to facilitate a flexible variation in impeller blade and diffuser vane geometries. It is solved within cfx frame by means of the particle swarm optimization (PSO) algorithm coupling the Kriging-based adaptive surrogate model. With the design optimization, the impeller and vaned diffuser tube geometries are collaboratively fine-tuned, and the mechanical energy dissipation and cavitating flow across both the impeller and vaned diffuser tube is effectively mitigated.

References

1.
Wang
,
K.
,
Sun
,
J.
, and
Song
,
P.
,
2015
, “
Experimental Study of Cryogenic Liquid Turbine Expander With Closed-Loop Liquefied Nitrogen System
,”
Cryogenics
,
67
, pp.
4
14
.10.1016/j.cryogenics.2015.01.004
2.
Li
,
H.
,
Li
,
W.
,
Zhang
,
X.
,
Zhu
,
Y.
,
Zuo
,
Z.
,
Chen
,
H.
, and
Yu
,
Z.
,
2022
, “
Performance and Flow Characteristics of the Liquid Turbine for Supercritical Compressed Air Energy Storage System
,”
Appl. Therm. Eng.
,
211
, p.
118491
.10.1016/j.applthermaleng.2022.118491
3.
Luo
,
X.
,
Ji
,
B.
, and
Tsujimoto
,
Y.
,
2016
, “
A Review of Cavitation in Hydraulic Machinery
,”
J. Hydrodyn., Ser. B
,
28
(
3
), pp.
335
358
.10.1016/S1001-6058(16)60638-8
4.
Yoshida
,
Y.
,
Sasao
,
Y.
,
Okita
,
K.
,
Hasegawa
,
S.
,
Shimagaki
,
M.
, and
Ikohagi
,
T.
,
2007
, “
Influence of Thermodynamic Effect on Synchronous Rotating Cavitation
,”
ASME J. Fluids Eng.
,
129
(
7
), pp.
871
876
.10.1115/1.2745838
5.
Hord
,
J.
,
1973
, “Cavitation in Liquid Cryogens, II-Hydrofoil,” NASA, Washington, DC, Report No. CR-2156.
6.
Hord
,
J.
,
1973
, “Cavitation in Liquid Cryogens, III-Ogives,” NASA, Washington, DC, Report No. CR-2242.
7.
Hosangadi
,
A.
, and
Ahuja
,
V.
,
2005
, “
Numerical Study of Cavitation in Cryogenic Fluids
,”
ASME J. Fluids Eng.
,
127
(
2
), pp.
267
281
.10.1115/1.1883238
8.
Utturkar
,
Y.
,
Wu
,
J.
,
Wang
,
G.
, and
Shyy
,
W.
,
2005
, “
Recent Progress in Modeling of Cryogenic Cavitation for Liquid Rocket Propulsion
,”
Prog. Aerosp. Sci.
,
41
(
7
), pp.
558
608
.10.1016/j.paerosci.2005.10.002
9.
Rodio
,
M. G.
,
De Giorgi
,
M. G.
, and
Ficarella
,
A.
,
2012
, “
Influence of Convective Heat Transfer Modeling on the Estimation of Thermal Effects in Cryogenic Cavitating Flows
,”
Int. J. Heat Mass Transfer
,
55
(
23–24
), pp.
6538
6554
.10.1016/j.ijheatmasstransfer.2012.06.060
10.
Le
,
A. D.
,
Okajima
,
J.
, and
Iga
,
Y.
,
2019
, “
Modification of Energy Equation for Homogeneous Cavitation Simulation With Thermodynamic Effect
,”
ASME J. Fluids Eng.
,
141
(
8
), p.
081102
.10.1115/1.4042257
11.
Zhu
,
J.
,
Chen
,
Y.
,
Zhao
,
D.
, and
Zhang
,
X.
,
2015
, “
Extension of the Schnerr-Sauer Model for Cryogenic Cavitation
,”
Eur. J. Mech. B-Fluid.
,
52
, pp.
1
10
.10.1016/j.euromechflu.2015.01.008
12.
Zhu
,
J.
,
Zhao
,
D.
,
Xu
,
L.
, and
Zhang
,
X.
,
2016
, “
Interactions of Vortices, Thermal Effects and Cavitation in Liquid Hydrogen Cavitating Flows
,”
Int. J. Hydrogen Energy
,
41
(
1
), pp.
614
631
.10.1016/j.ijhydene.2015.10.042
13.
Zhu
,
J.
,
Wang
,
S.
,
Qiu
,
L.
,
Zhi
,
X.
, and
Zhang
,
X.
,
2018
, “
Frequency Characteristics of Liquid Hydrogen Cavitating Flow Over a NACA0015 Hydrofoil
,”
Cryogenics
,
90
, pp.
7
19
.10.1016/j.cryogenics.2017.12.007
14.
Johansen
,
S.
,
Wu
,
J.
, and
Shyy
,
W.
,
2004
, “
Filter-Based Unsteady RANS Computations
,”
Int. J. Heat Mass Transfer
,
25
(
1
), pp.
10
21
.10.1016/j.ijheatfluidflow.2003.10.005
15.
Coutier-Delgosha
,
O.
,
Fortes-Patella
,
R.
, and
Reboud
,
J. L.
,
2003
, “
Evaluation of the Turbulence Model Influence on the Numerical Simulations of Unsteady Cavitation
,”
ASME J. Fluids Eng.
,
125
(
1
), pp.
38
45
.10.1115/1.1524584
16.
Chen
,
T.
,
Wang
,
G.
,
Huang
,
B.
, and
Wang
,
K.
,
2015
, “
Numerical Study of Thermodynamic Effects on Liquid Nitrogen Cavitating Flows
,”
Cryogenics
,
70
, pp.
21
27
.10.1016/j.cryogenics.2015.04.009
17.
Chen
,
T.
,
Huang
,
B.
,
Wang
,
G.
, and
Zhao
,
X.
,
2016
, “
Numerical Study of Cavitating Flows in a Wide Range of Water Temperatures With Special Emphasis on Two Typical Cavitation Dynamics
,”
Int. J. Heat Mass Transfer
,
101
, pp.
886
900
.10.1016/j.ijheatmasstransfer.2016.05.107
18.
Chen
,
T.
,
Chen
,
H.
,
Huang
,
B.
,
Liang
,
W.
,
Xiang
,
L.
, and
Wang
,
G.
,
2018
, “
Thermal Transition and Its Evaluation of Liquid Hydrogen Cavitating Flow in a Wide Range of Free-Stream Conditions
,”
Int. J. Heat Mass Transfer
,
127
, pp.
1277
1289
.10.1016/j.ijheatmasstransfer.2018.06.096
19.
Kock
,
F.
, and
Herwig
,
H.
,
2004
, “
Local Entropy Production in Turbulent Shear Flows: A High Reynolds Number Model With Wall Functions
,”
Int. J. Heat Mass Transfer
,
47
(
10–11
), pp.
2205
2215
.10.1016/j.ijheatmasstransfer.2003.11.025
20.
Herwig
,
H.
, and
Kock
,
F.
,
2006
, “
Direct and Indirect Methods of Calculating Entropy Generation Rates in Turbulent Convective Heat Transfer Problems
,”
Heat Mass Transfer
,
43
(
3
), pp.
207
215
.10.1007/s00231-006-0086-x
21.
Hou
,
H.
,
Zhang
,
Y.
,
Zhou
,
X.
,
Zuo
,
Z.
, and
Chen
,
H.
,
2019
, “
Optimal Hydraulic Design of an Ultra-Low Specific Speed Centrifugal Pump Based on the Local Entropy Production Theory
,”
Proc. Inst. Mech. Eng., Part A
,
233
(
6
), pp.
1
12
.10.1177/0957650918825408
22.
Yun
,
R.
,
Zuchao
,
Z.
,
Denghao
,
W.
, and
Xiaojun
,
L.
,
2019
, “
Influence of Guide Ring on Energy Loss in a Multistage Centrifugal Pump
,”
ASME J. Fluids Eng.
,
141
(
6
), p.
061302
.10.1115/1.4041876
23.
Li
,
D.
,
Wang
,
H.
,
Qin
,
Y.
,
Han
,
L.
,
Wei
,
X.
, and
Qin
,
D.
,
2017
, “
Entropy Production Analysis of Hysteresis Characteristic of a Pump-Turbine Model
,”
Energy Convers. Manage.
,
149
, pp.
175
191
.10.1016/j.enconman.2017.07.024
24.
Wang
,
C.
,
Zhang
,
Y.
,
Yuan
,
Z.
, and
Ji
,
K.
,
2020
, “
Development and Application of the Entropy Production Diagnostic Model to the Cavitation Flow of a Pump-Turbine in Pump Mode
,”
Renew. Energy
,
154
, pp.
774
785
.10.1016/j.renene.2020.03.065
25.
Bilicki
,
Z.
,
Giot
,
M.
, and
Kwidzinski
,
R.
,
2002
, “
Fundamentals of Two-Phase Flow by the Method of Irreversible Thermodynamics
,”
Int. J. Multiphase Flow
,
28
(
12
), pp.
1983
2005
.10.1016/S0301-9322(02)00107-6
26.
Wang
,
C.
,
Zhang
,
Y.
,
Hou
,
H.
,
Zhang
,
J.
, and
Xu
,
C.
,
2019
, “
Entropy Production Diagnostic Analysis of Energy Consumption for Cavitation Flow in a Two-Stage LNG Cryogenic Submerged Pump
,”
Int. J. Heat Mass Transfer
,
129
, pp.
342
356
.10.1016/j.ijheatmasstransfer.2018.09.070
27.
Yu
,
A.
,
Tang
,
Q.
, and
Zhou
,
D.
,
2020
, “
Entropy Production Analysis in Thermodynamic Cavitating Flow With the Consideration of Local Compressibility
,”
Int. J. Heat Mass Transfer
,
153
, p.
119604
.10.1016/j.ijheatmasstransfer.2020.119604
28.
Song
,
P.
,
Sun
,
J.
, and
Huo
,
C.
,
2020
, “
Cavitating Flow Suppression for a Two-Phase Liquefied Natural Gas Expander Through Collaborative Fine-Turning Design Optimization of Impeller and Exducer Geometric Shape
,”
ASME J. Fluids Eng.
,
142
(
5
), p.
051401
.10.1115/1.4045713
29.
Song
,
P.
,
Sun
,
J.
, and
Wang
,
K.
,
2015
, “
Swirling and Cavitating Flow Suppression in a Cryogenic Liquid Turbine Expander Through Geometric Optimization
,”
Proc. Inst. Mech. Eng. Part A
,
229
(
6
), pp.
628
646
.10.1177/0957650915589062
30.
Franc
,
J. P.
,
Rebattet
,
C.
, and
Coulon
,
A.
,
2004
, “
An Experimental Investigation of Thermal Effects in a Cavitating Inducer
,”
ASME J. Fluids Eng.
,
126
(
5
), pp.
716
23
.10.1115/1.1792278
31.
Kelly
,
S.
,
Segal
,
C.
, and
Peugeot
,
J.
,
2011
, “
Simulation of Cryogenics Cavitation
,”
AIAA J.
,
49
(
11
), pp.
2502
2510
.10.2514/1.J051033
32.
Singhal
,
A. K.
,
Athavale
,
M. M.
,
Li
,
H.
, and
Jiang
,
Y.
,
2002
, “
Mathematical Basis and Validation of the Full Cavitation Model
,”
ASME J. Fluids Eng.
,
124
(
3
), pp.
617
624
.10.1115/1.1486223
33.
Sun
,
S.
,
Sun
,
J.
,
Sun
,
W.
, and
Song
,
P.
,
2021
, “
Enhancing Cryogenic Cavitation Prediction Through Incorporating Modified Cavitation and Turbulence Models
,”
ASME J. Fluids Eng.
,
143
(
6
), p.
061404
.10.1115/1.4050056
34.
Ji
,
B.
,
Luo
,
X.
,
Arndt
,
R. E. A.
, and
Wu
,
Y.
,
2014
, “
Numerical Simulation of Three-Dimensional Cavitation Shedding Dynamics With Special Emphasis on Cavitation–Vortex Interaction
,”
Ocean Eng.
,
87
, pp.
64
77
.10.1016/j.oceaneng.2014.05.005
35.
Long
,
X.
,
Liu
,
Q.
,
Ji
,
B.
, and
Lu
,
Y.
,
2017
, “
Numerical Investigation of Two Typical Cavitation Shedding Dynamics Flow in Liquid Hydrogen With Thermodynamic Effects
,”
Int. J. Heat Mass Transfer
,
109
, pp.
879
893
.10.1016/j.ijheatmasstransfer.2017.02.063
36.
Tseng
,
C. C.
, and
Shyy
,
W.
,
2010
, “
Modeling for Isothermal and Cryogenic Cavitation
,”
Int. J. Heat Mass Transfer
,
53
(
1–3
), pp.
513
525
.10.1016/j.ijheatmasstransfer.2009.09.005
37.
Brennen
,
C. E.
,
1995
,
Cavitation and Bubble Dynamics
,
Oxford University
,
New York
.
38.
Zhang
,
T.
,
Wang
,
Z.
,
Huang
,
W.
, and
Yan
,
L.
,
2018
, “
A Review of Parametric Approaches Specific to Aerodynamic Design Process
,”
Acta Astronaut.
,
145
, pp.
319
331
.10.1016/j.actaastro.2018.02.011
39.
Shen
,
Y.
,
Huang
,
W.
,
Yan
,
L.
, and
Zhang
,
T.
,
2020
, “
Constraint-Based Parameterization Using FFD and Multi-Objective Design Optimization of a Hypersonic Vehicle
,”
Aerosp. Sci. Technol.
,
100
, p.
105788
.10.1016/j.ast.2020.105788
40.
Zhao
,
Z.
,
Fu
,
Y.
,
Liu
,
X.
,
Xu
,
J.
,
Wang
,
J.
, and
Mao
,
S.
,
2017
, “
Measurement-Based Geometric Reconstruction for Milling Turbine Blade Using Free-Form Deformation
,”
Measurement
,
101
, pp.
19
27
.10.1016/j.measurement.2017.01.009
You do not currently have access to this content.