Abstract

In turbopump inducers, cavitation on one blade can change incidence on the following blade, and this “blade-to-blade interaction” can lead to local cavitation instabilities such as alternate blade cavitation (ABC) and supersynchronous rotating cavitation. However, how the inducer operating condition (e.g., flow rate) affects the blade-to-blade interaction is still unknown. Therefore, for the first time, the dependence of blade-to-blade interaction on the inducer flow rate has been measured via fluorescent particle image velocimetry (fPIV) and high-speed visualization. The blade-to-blade interaction depends nonlinearly on the flow rate and is maximized at a certain flow rate, or certain incidence (αmax). At the flow rate corresponding to αmax, the cavity trailing edge on the leading blade is located near the inducer throat, and a sink-like flow is generated closest to the following blade’s leading edge, maximizing the blade-to-blade interaction. As the flow rate either increases or decreases from the flow rate corresponding to αmax, the trailing edge of the leading blade cavity moves farther away (upstream and downstream) from the inducer throat, weakening the blade-to-blade interaction.

References

1.
Tsujimoto
,
Y.
,
Yoshida
,
Y.
,
Maekawa
,
Y.
,
Watanabe
,
S.
, and
Hashimoto
,
T.
,
1997
, “
Observations of Oscillating Cavitation of an Inducer
,”
ASME J. Fluids Eng.
,
119
(
4
), pp.
775
781
.10.1115/1.2819497
2.
Cervone
,
A.
,
Bramanti
,
C.
,
Rapposelli
,
E.
,
Torre
,
L.
, and
d’Agostino
,
L.
,
2006
, “
Experimental Characterization of Cavitation Instabilities in a Two-Bladed Axial Inducer
,”
J. Propul. Power
,
22
(
6
), pp.
1389
1395
.10.2514/1.19637
3.
Yoshida
,
Y.
,
Nanri
,
H.
,
Kikuta
,
K.
,
Kazami
,
Y.
,
Iga
,
Y.
, and
Ikohagi
,
T.
,
2011
, “
Thermodynamic Effect on Subsynchronous Rotating Cavitation and Surge Mode Oscillation in a Space Inducer
,”
ASME J. Fluids Eng.
,
133
(
6
), p.
061301
.10.1115/1.4004022
4.
Huang
,
J.-D.
,
Aoki
,
M.
, and
Zhang
,
J.-T.
,
1998
, “
Alternate Blade Cavitation on Inducer
,”
JSME Int. J. Ser. B Fluids Therm. Eng.
,
41
(
1
), pp.
1
6
.10.1299/jsmeb.41.1
5.
Moore
,
F. K.
, and
Greitzer
,
E. M.
,
1986
, “
A Theory of Post-Stall Transients in Axial Compression Systems: Part I—Development of Equations
,”
ASME J. Eng. Gas Turbines Power
,
108
(
1
), pp.
68
76
.10.1115/1.3239887
6.
Brennen
,
C.
, and
Acosta
,
A.
,
1976
, “
The Dynamic Transfer Function for a Cavitating Inducer
,”
ASME J. Fluids Eng.
,
98
(
2
), pp.
182
191
.10.1115/1.3448255
7.
Kang
,
D.
, and
Yokota
,
K.
,
2014
, “
Analytical Study of Cavitation Surge in a Hydraulic System
,”
ASME J. Fluids Eng.
,
136
(
10
), p.
101103
.10.1115/1.4027220
8.
Tsujimoto
,
Y.
,
Kamijo
,
K.
, and
Yoshida
,
Y.
,
1993
, “
A Theoretical Analysis of Rotating Cavitation in Inducers
,”
ASME J. Fluids Eng.
,
115
(
1
), pp.
135
141
.10.1115/1.2910095
9.
Ng
,
S.
, and
Brennen
,
C.
,
1978
, “
Experiments on the Dynamic Behavior of Cavitating Pumps
,”
ASME J. Fluids Eng.
,
100
(
2
), pp.
166
176
.10.1115/1.3448625
10.
Brennen
,
C. E.
,
Meissner
,
C.
,
Lo
,
E.
, and
Hoffman
,
G.
,
1982
, “
Scale Effects in the Dynamic Transfer Functions for Cavitating Inducers
,”
ASME J. Fluids Eng.
,
104
(
4
), pp.
428
433
.10.1115/1.3241875
11.
Yamamoto
,
K.
, and
Tsujimoto
,
Y.
,
2009
, “
A Backflow Vortex Cavitation and Its Effects on Cavitation Instabilities
,”
Int. J. Fluid Mach. Syst.
,
2
(
1
), pp.
40
54
.10.5293/IJFMS.2009.2.1.040
12.
Brennen
,
C.
, and
Acosta
,
A.
,
1973
, “
Theoretical, Quasi-Static Analysis of Cavitation Compliance in Turbopumps
,”
J. Spacecr. Rockets
,
10
(
3
), pp.
175
180
.10.2514/3.27748
13.
Otsuka
,
S.
,
Tsujimoto
,
Y.
,
Kamijo
,
K.
, and
Furuya
,
O.
,
1996
, “
Frequency Dependence of Mass Flow Gain Factor and Cavitation Compliance of Cavitating Inducers
,”
ASME J. Fluids Eng.
,
118
(
2
), pp.
400
408
.10.1115/1.2817392
14.
Wan
,
Y.
,
Manfredi
,
M.
,
Pasini
,
A.
, and
Spakovszky
,
Z.
,
2021
, “
Dynamic Model-Based Identification of Cavitation Compliance and Mass Flow Gain Factor in Rocket Engine Turbopump Inducers
,”
ASME J. Eng. Gas Turbines Power
,
143
(
2
), p. 021011.10.1115/1.4049015
15.
Tsujimoto
,
Y.
,
Kamijo
,
K.
, and
Brennen
,
C. E.
,
2001
, “
Unified Treatment of Flow Instabilities of Turbomachines
,”
J. Propul. Power
,
17
(
3
), pp.
636
643
.10.2514/2.5790
16.
Watanabe
,
S.
,
Sato
,
K.
,
Tsujimoto
,
Y.
, and
Kamijo
,
K.
,
1999
, “
Analysis of Rotating Cavitation in a Finite Pitch Cascade Using a Closed Cavity Model and a Singularity Method
,”
ASME J. Fluids Eng.
,
121
(
4
), pp.
834
840
.10.1115/1.2823544
17.
Horiguchi
,
H.
,
Watanabe
,
S.
, and
Tsujimoto
,
Y.
,
2000
, “
A Linear Stability Analysis of Cavitation in a Finite Blade Count Impeller
,”
ASME J. Fluids Eng.
,
122
(
4
), pp.
798
805
.10.1115/1.1315300
18.
Horiguchi
,
H.
,
Watanabe
,
S.
,
Tsujimoto
,
Y.
, and
Aoki
,
M.
,
2000
, “
A Theoretical Analysis of Alternate Blade Cavitation in Inducers
,”
ASME J. Fluids Eng.
,
122
(
1
), pp.
156
163
.10.1115/1.483238
19.
Semenov
,
Y.
, and
Tsujimoto
,
Y.
,
2003
, “
A Cavity Wake Model Based on the Viscous/Inviscid Interaction Approach and Its Application to Nonsymmetric Cavity Flows in Inducers
,”
ASME J. Fluids Eng.
,
125
(
5
), pp.
758
766
.10.1115/1.1598990
20.
Kang
,
D.
,
Yonezawa
,
K.
,
Horiguchi
,
H.
,
Kawata
,
Y.
, and
Tsujimoto
,
Y.
,
2009
, “
Cause of Cavitation Instabilities in Three Dimensional Inducer
,”
Int. J. Fluid Mach. Syst.
,
2
(
3
), pp.
206
214
.10.5293/IJFMS.2009.2.3.206
21.
Kim
,
J.
, and
Song
,
S. J.
,
2019
, “
Visualization of Rotating Cavitation Oscillation Mechanism in a Turbopump Inducer
,”
ASME J. Fluids Eng.
,
141
(
9
), p.
091103
.10.1115/1.4042884
22.
Yoon
,
Y.
,
Kim
,
J.
, and
Song
,
S. J.
,
2022
, “
Identification of Inducer Cavitation Instabilities Using High-Speed Visualization
,”
Exp. Therm. Fluid Sci.
,
132
, p.
110548
.10.1016/j.expthermflusci.2021.110548
23.
Lakshminarayana
,
B.
,
1972
, “
Visualization Study of Flow in Axial Flow Inducer
,”
ASME J. Basic Eng.
,
94
(
4
), pp.
777
787
.10.1115/1.3425553
24.
Watanabe
,
S.
,
Seki
,
H.
,
Higashi
,
S.
,
Yokota
,
K.
, and
Tsujimoto
,
Y.
,
2001
, “
Modeling of 2-D Leakage Jet Cavitation as a Basic Study of Tip Leakage Vortex Cavitation
,”
ASME J. Fluids Eng.
,
123
(
1
), pp.
50
56
.10.1115/1.1340634
25.
Choi
,
C.-H.
, and
Kim
,
J.
,
2015
, “
Study on the Cavitating Flows in a Turbopump Inducer
,”
J. Propul. Power
,
31
(
2
), pp.
537
542
.10.2514/1.B35216
26.
Liu
,
Y.
, and
Tan
,
L.
,
2019
, “
Spatial–Temporal Evolution of Tip Leakage Vortex in a Mixed-Flow Pump With Tip Clearance
,”
ASME J. Fluids Eng.
,
141
(
8
), p.
081302
.10.1115/1.4042756
27.
Lee
,
H.
,
Park
,
H. J.
,
Kim
,
M.
,
Han
,
J.
, and
Hwang
,
W.
,
2022
, “
The Effect of Perspective Error on 2D PIV Measurements of Homogeneous Isotropic Turbulence
,”
Exp. Fluids
,
63
(
8
), p.
122
.10.1007/s00348-022-03483-w
28.
Sciacchitano
,
A.
,
Neal
,
D. R.
,
Smith
,
B. L.
,
Warner
,
S. O.
,
Vlachos
,
P. P.
,
Wieneke
,
B.
, and
Scarano
,
F.
,
2015
, “
Collaborative Framework for PIV Uncertainty Quantification: Comparative Assessment of Methods
,”
Meas. Sci. Technol.
,
26
(
7
), p.
074004
.10.1088/0957-0233/26/7/074004
29.
Lakshminarayana
,
B.
,
1982
, “
Fluid Dynamics of Inducers—A Review
,”
ASME J. Fluids Eng.
,
104
(
4
), pp.
411
427
.10.1115/1.3241874
You do not currently have access to this content.