Abstract

This study investigates the vibrational response of horizontal rigid pipelines subjected to internal two-phase flow with simulated leaks. Using spectral-based contour plots and vibrational energy measurements, we analyze the dynamics across various flow velocities and patterns in a 5-m-long, 2-in diameter pipeline. Results indicate that flow patterns and Reynolds numbers significantly influence vibration characteristics. Except for bubbly flow, increasing the mixture Reynolds number amplifies power spectral magnitudes and extends excitation to higher frequencies, independent of leaks. Fluid loss enhances spectral magnitudes at higher liquid Reynolds numbers, with gas Reynolds numbers further intensifying vibration. Leaks modify spectral spikes due to multiphase flow fluctuations, making them more pronounced and persistent. Vibrational augmentation is predominant in the direction of fluid loss, peaking at the leak location and attenuating with increasing distance from the leak location. Slug flow demonstrates the highest increase in vibrational energy. Bubbly flow exhibits maximum leak to no-leak amplification (15–25 dB), followed by slug flow (5–15 dB), and plug flow (<10 dB). Minimal leak-induced effects (<5 dB) occur in stratified wavy and low-velocity intermittent flows. This study establishes a foundation for leak detection and pipeline health monitoring, emphasizing the role of flow-induced vibration analysis in enhancing pipeline safety.

References

1.
Beavers
,
G.
, and
Plunkett
,
R.
,
1974
, “
Modeling of Flow-Induced Vibrations in Heat Exchangers and Nuclear Reactors
,”
ASME J. Fluids Eng.
,
96
(
4
), pp.
358
364
.10.1115/1.3447170
2.
Miwa
,
S.
,
Mori
,
M.
, and
Hibiki
,
T.
,
2015
, “
Two-Phase Flow Induced Vibration in Piping Systems
,”
Prog. Nucl. Energy
,
78
, pp.
270
284
.10.1016/j.pnucene.2014.10.003
3.
Khan
,
U.
,
Pao
,
W.
, and
Sallih
,
N.
,
2022
, “
A Review: Factors Affecting Internal Two-Phase Flow-Induced Vibrations
,”
Appl. Sci.
,
12
(
17
), p.
8406
.10.3390/app12178406
4.
Hibiki
,
T.
, and
Ishii
,
M.
,
1998
, “
Effect of Flow-Induced Vibration on Local Flow Parameters of Two-Phase Flow
,”
Nucl. Eng. Des.
,
185
(
2–3
), pp.
113
125
.10.1016/S0029-5493(98)00241-6
5.
Ishii
,
M.
, and
Hibiki
,
T.
,
2010
,
Thermo-Fluid Dynamics of Two-Phase Flow
,
Springer Science and Business Media
, Heidelberg, Germany.10.1007/978-1-4419-7985-8
6.
Miwa
,
S.
,
Liu
,
Y.
,
Hibiki
,
T.
,
Ishii
,
M.
,
Kondo
,
Y.
,
Morita
,
H.
, and
Tanimoto
,
K.
,
2014
, “
Two-Phase Flow Induced Force Fluctuations on Pipe Bend
,”
ASME
Paper No. ICONE22-30573.10.1115/ICONE22-30573
7.
Miwa
,
S.
,
Hibiki
,
T.
, and
Mori
,
M.
,
2016
, “
Analysis of Flow-Induced Vibration Due to Stratified Wavy Two-Phase Flow
,”
ASME J. Fluids Eng.
,
138
(
9
), p.
091302
.10.1115/1.4033371
8.
Ishii
,
M.
,
2016
, “
Review on Two-Fluid Model for Two-Phase Flow
,”
Multiphase Sci. Technol.
,
28
(
3
), pp.
258
320
.10.1615/MultScienTechn.v28.i3.40
9.
Chinello
,
G.
,
Ayati
,
A. A.
,
McGlinchey
,
D.
,
Ooms
,
G.
, and
Henkes
,
R.
,
2019
, “
Comparison of Computational Fluid Dynamics Simulations and Experiments for Stratified Air-Water Flows in Pipes
,”
ASME J. Fluids Eng.
,
141
(
5
), p.
051302
.10.1115/1.4041667
10.
Yih
,
T.
, and
Griffith
,
P.
,
1970
, “
Unsteady Momentum Fluxes in Two-Phase Flow and the Vibration of Nuclear System Components
,”
Proceedings of the International Conference on Flow-Induced Vibrations in Reactor System Components
, Lemont, IL, May 14–15, pp.
91
111
.10.2172/4115145
11.
Liu
,
Y.
,
Miwa
,
S.
,
Hibiki
,
T.
,
Ishii
,
M.
,
Morita
,
H.
,
Kondoh
,
Y.
, and
Tanimoto
,
K.
,
2012
, “
Experimental Study of Internal Two-Phase Flow Induced Fluctuating Force on a 90 Elbow
,”
Chem. Eng. Sci.
,
76
, pp.
173
187
.10.1016/j.ces.2012.04.021
12.
Fu
,
G.
,
Wang
,
X.
,
Wang
,
B.
,
Su
,
J.
,
Wang
,
K.
, and
Sun
,
B.
,
2024
, “
Dynamic Behavior of Axially Functionally Graded Pipe Conveying Gas–Liquid Two-Phase Flow
,”
Appl. Ocean Res.
,
142
, p.
103827
.10.1016/j.apor.2023.103827
13.
Wang
,
L.
,
Yang
,
Y.
,
Li
,
Y.
, and
Wang
,
Y.
,
2018
, “
Dynamic Behaviours of Horizontal Gas-Liquid Pipes Subjected to Hydrodynamic Slug Flow: Modelling and Experiments
,”
Int. J. Pressure Vessels Piping
,
161
, pp.
50
57
.10.1016/j.ijpvp.2018.02.005
14.
Porter
,
K.
,
Pereyra
,
E.
,
Mesa
,
J.
, and
Sarica
,
C.
,
2023
, “
Experimental Investigation of Induced Vibrations in Horizontal Gas-Liquid Flow
,”
Exp. Therm. Fluid Sci.
,
149
, p.
111015
.10.1016/j.expthermflusci.2023.111015
15.
Cargnelutti
,
M.
,
Belfroid
,
S.
, and
Schiferli
,
W.
,
2010
, “
Two-Phase Flow-Induced Forces on Bends in Small Scale Tubes
,”
ASME J. Pressure Vessel Technol.
,
132
(
4
), p.
041305
.10.1115/1.4001523
16.
Riverin
,
J.
,
De Langre
,
E.
, and
Pettigrew
,
M. J.
,
2006
, “
Fluctuating Forces Caused by Internal Two-Phase Flow on Bends and Tees
,”
J. Sound Vib.
,
298
(
4–5
), pp.
1088
1098
.10.1016/j.jsv.2006.06.039
17.
Pettigrew
,
M.
, and
Taylor
,
C.
,
1994
, “
Two-Phase Flow-Induced Vibration: An Overview (Survey Paper)
,”
ASME J. Pressure Vessel Technol.
,
116
(
3
), pp.
233
253
.10.1115/1.2929583
18.
Bamidele
,
O. E.
,
Ahmed
,
W. H.
, and
Hassan
,
M.
,
2022
, “
Characterizing Two-Phase Flow-Induced Vibration in Piping Structures With U-Bends
,”
Int. J. Multiphase Flow
,
151
, p.
104042
.10.1016/j.ijmultiphaseflow.2022.104042
19.
Hossain
,
M.
,
Chinenye-Kanu
,
N. M.
,
Droubi
,
G. M.
, and
Islam
,
S. Z.
,
2019
, “
Investigation of Slug-Churn Flow Induced Transient Excitation Forces at Pipe Bend
,”
J. Fluids Struct.
,
91
, p.
102733
.10.1016/j.jfluidstructs.2019.102733
20.
Nair
,
A.
,
Chauvet
,
C.
,
Whooley
,
A.
,
Eltaher
,
A.
, and
Jukes
,
P.
,
2011
, “
Flow Induced Forces on Multi-Planar Rigid Jumper Systems
,”
ASME
Paper No. OMAE2011-50225.10.1115/OMAE2011-50225
21.
Mohmmed
,
A. O.
,
Al-Kayiem
,
H. H.
,
Osman
,
A.
, and
Sabir
,
O.
,
2020
, “
One-Way Coupled Fluid–Structure Interaction of Gas–Liquid Slug Flow in a Horizontal Pipe: Experiments and Simulations
,”
J. Fluids Struct.
,
97
, p.
103083
.10.1016/j.jfluidstructs.2020.103083
22.
Bamidele
,
O. E.
,
Ahmed
,
W. H.
, and
Hassan
,
M.
,
2019
, “
Two-Phase Flow Induced Vibration of Piping Structure With Flow Restricting Orifices
,”
Int. J. Multiphase Flow
,
113
, pp.
59
70
.10.1016/j.ijmultiphaseflow.2019.01.002
23.
Gama
,
A. L.
,
dos Santos
,
F. L. R.
, and
Walter
,
F. P.
,
2009
, “
Experimental Study on the Measurement of Two-Phase Flow Rate Using Pipe Vibration
,”
Proceedings of the 20th International Congress of Mechanical Engineering
, Gramado, Rio Grande do Sul, Brazil, Nov. 15–20, pp.
15
20
.https://www.abcm.org.br/anais/cobem/2009/pdf/COB09-3171.pdf
24.
de Castro Teixeira Carvalho
,
F.
,
de Melo Freire Figueiredo
,
M.
, and
Serpa
,
A. L.
,
2022
, “
Elongated Bubble Velocity Estimation in Vertical Liquid-Gas Flows Using Flow-Induced Vibration
,”
Exp. Therm. Fluid Sci.
,
131
, p.
110521
.10.1016/j.expthermflusci.2021.110521
25.
Chen
,
H.
,
Dang
,
Z.
,
Park
,
S. S.
, and
Hugo
,
R.
,
2023
, “
Robust CNN-Based Flow Pattern Identification for Horizontal Gas-Liquid Pipe Flow Using Flow-Induced Vibration
,”
Exp. Therm. Fluid Sci.
,
148
, p.
110979
.10.1016/j.expthermflusci.2023.110979
26.
An
,
C.
, and
Su
,
J.
,
2015
, “
Dynamic Behavior of Pipes Conveying Gas–Liquid Two-Phase Flow
,”
Nucl. Eng. Des.
,
292
, pp.
204
212
.10.1016/j.nucengdes.2015.06.012
27.
Ortiz-Vidal
,
L. E.
,
Mureithi
,
N. W.
, and
Rodriguez
,
O. M.
,
2017
, “
Vibration Response of a Pipe Subjected to Two-Phase Flow: Analytical Formulations and Experiments
,”
Nucl. Eng. Des.
,
313
, pp.
214
224
.10.1016/j.nucengdes.2016.12.020
28.
Liu
,
G.
, and
Wang
,
Y.
,
2018
, “
Study on the Natural Frequencies of Pipes Conveying Gas-Liquid Two-Phase Slug Flow
,”
Int. J. Mech. Sci.
,
141
, pp.
168
188
.10.1016/j.ijmecsci.2018.03.040
29.
Belfroid
,
S.
,
Gonzalez-Diez
,
N.
,
Lunde
,
K.
, and
Orre
,
S.
,
2020
, “
Multiphase Flow Induced Vibrations at High Pressure
,”
ASME
Paper No. PVP2020-21139.10.1115/PVP2020-21139
30.
Ebrahimi-Mamaghani
,
A.
,
Mostoufi
,
N.
,
Sotudeh-Gharebagh
,
R.
, and
Zarghami
,
R.
,
2022
, “
Vibrational Analysis of Pipes Based on the Drift-Flux Two-Phase Flow Model
,”
Ocean Eng.
,
249
, p.
110917
.10.1016/j.oceaneng.2022.110917
31.
Oyelade
,
A. O.
, and
Oyediran
,
A. A.
,
2021
, “
Nonlinear Dynamics of Horizontal Pipes Conveying Two Phase Flow
,”
Eur. J. Mech.-A/Solids
,
90
, p.
104367
.10.1016/j.euromechsol.2021.104367
32.
Su
,
H.
,
Qu
,
Y.
, and
Peng
,
Z.
,
2023
, “
Investigation on Gas-Liquid Two-Phase Flow-Induced Vibrations of a Horizontal Elastic Pipe
,”
ASME J. Pressure Vessel Technol.
,
145
(
6
), p.
061402
.10.1115/1.4063241
33.
Figueiredo
,
A. B.
,
Sondermann
,
C. N.
,
Patricio
,
R. A.
,
Bodstein
,
G. C.
, and
Rachid
,
F. B.
,
2017
, “
A Leak Localization Model for Gas-Liquid Two-Phase Flows in Nearly Horizontal Pipelines
,”
ASME
Paper No. IMECE2017-71512.10.1115/IMECE2017-71512
34.
de Vasconcellos Araújo
,
M.
,
de Farias Neto
,
S. R.
, and
de Lima
,
A. G. B.
,
2013
, “
Theoretical Evaluation of Two-Phase Flow in a Horizontal Duct With Leaks
,”
Adv. Chem. Eng. Sci.
,
3
(
4
), pp.
6
14
.10.4236/aces.2013.34A1002
35.
Adegboye
,
M. A.
,
Karnik
,
A.
, and
Fung
,
W.-K.
,
2021
, “
Numerical Study of Pipeline Leak Detection for Gas-Liquid Stratified Flow
,”
J. Nat. Gas Sci. Eng.
,
94
, p.
104054
.10.1016/j.jngse.2021.104054
36.
Chen
,
H.
,
Dang
,
Z.
,
Bayati
,
F.
,
Park
,
S.
, and
Hugo
,
R.
,
2024
, “
Leak Orientation Effects on Flow-Induced Vibration in Horizontal Multiphase Pipelines
,”
ASME
Paper No. IPC2024-134107.10.1115/IPC2024-134107
37.
Ji
,
J.
,
Li
,
Y.
,
Liu
,
C.
,
Wang
,
D.
, and
Jing
,
H.
,
2018
, “
Application of EMD Technology in Leakage Acoustic Characteristic Extraction of Gas-Liquid, Two-Phase Flow Pipelines
,”
Shock Vib.
,
2018
(
1
), pp.
1
16
.10.1155/2018/1529849
38.
Chaari
,
M.
,
Fekih
,
A.
,
Seibi
,
A. C.
, and
Ben Hmida
,
J.
,
2019
, “
A Generalized Reduced-Order Dynamic Model for Two-Phase Flow in Pipes
,”
ASME J. Fluids Eng.
,
141
(
10
), p.
101303
.10.1115/1.4043858
39.
Chaari
,
M.
,
Seibi
,
A. C.
,
Hmida
,
J. B.
, and
Fekih
,
A.
,
2018
, “
An Optimized Artificial Neural Network Unifying Model for Steady-State Liquid Holdup Estimation in Two-Phase Gas–Liquid Flow
,”
ASME J. Fluids Eng.
,
140
(
10
), p.
101301
.10.1115/1.4039710
40.
Saito
,
N.
,
Miyano
,
H.
, and
Furukawa
,
S.
,
1990
, “
Study on Vibration Response of Pipes Induced by Internal Flow
,”
ASME PVP, 189, pp. 233--238
.
41.
Kong
,
R.
,
Zhu
,
Q.
,
Kim
,
S.
,
Ishii
,
M.
,
Bajorek
,
S.
,
Tien
,
K.
, and
Hoxie
,
C.
,
2018
, “
Void Fraction Prediction and One-Dimensional Drift-Flux Analysis for Horizontal Two-Phase Flow in Different Pipe Sizes
,”
Exp. Therm. Fluid Sci.
,
99
, pp.
433
445
.10.1016/j.expthermflusci.2018.08.019
42.
Welch
,
P.
,
1967
, “
The Use of Fast Fourier Transform for the Estimation of Power Spectra: A Method Based on Time Averaging Over Short, Modified Periodograms
,”
IEEE Trans. Audio Electroacoust.
,
15
(
2
), pp.
70
73
.10.1109/TAU.1967.1161901
You do not currently have access to this content.