Abstract

The lattice Boltzmann method (LBM) is utilized to numerically investigate the permeability and effective thermal conductivity of simple cubic and body-centered truss structures. The key objective of this paper is to analyze how different geometric parameters affect the macroscopic properties of these truss structures that are increasingly used in advanced engineering applications due to their unique thermal-fluid characteristics. Simple cubic and body-centered cubic (SC-BCC) lattice structures are modeled, and the simulations are performed to determine their permeability and effective thermal conductivity. The findings highlight that the rod diameter and simple-cubic diameter significantly influence porosity, permeability, and thermal conductivity. Larger rod diameters generally result in higher porosity and permeability but may reduce thermal conductivity. Conversely, smaller simple-cubic diameters tend to enhance thermal conductivity. These results can optimize the design and application of truss structures in heat exchangers, cooling systems, and other areas where efficient thermal management and fluid flow are critical. The study concludes that LBM is an effective tool for predicting the thermal-fluid behavior of complex porous structures, providing valuable insights for the engineering design of advanced materials.

References

1.
Gharehghani
,
A.
,
Ghasemi
,
K.
,
Siavashi
,
M.
, and
Mehranfar
,
S.
,
2021
, “
Applications of Porous Materials in Combustion Systems: A Comprehensive and State-of-the-Art Review
,”
Fuel
,
304
, p.
121411
.10.1016/j.fuel.2021.121411
2.
Mujeebu
,
M. A.
,
Abdullah
,
M. Z.
,
Bakar
,
M. Z. A.
,
Mohamad
,
A. A.
, and
Abdullah
,
M. K.
,
2009
, “
Applications of Porous Media Combustion Technology–a Review
,”
Appl. Energy
,
86
(
9
), pp.
1365
1375
.10.1016/j.apenergy.2009.01.017
3.
Pharoah
,
J.
,
2005
, “
On the Permeability of Gas Diffusion Media Used in PEM Fuel Cells
,”
J. Power Sources
,
144
(
1
), pp.
77
82
.10.1016/j.jpowsour.2004.11.069
4.
Rashidian
,
S.
, and
Tavakoli
,
M. R.
,
2017
, “
Using Porous Media to Enhancement of Heat Transfer in Heat Exchangers
,”
Int. J. Adv. Eng., Manage. Sci.
,
3
(
11
), pp.
1051
1064
.10.24001/ijaems.3.11.5
5.
Van Doormaal
,
M. A.
, and
Pharoah
,
J. G.
,
2009
, “
Determination of Permeability in Fibrous Porous Media Using the Lattice Boltzmann Method With Application to PEM Fuel Cells
,”
Int. J. Numer. Methods Fluids
,
59
(
1
), pp.
75
89
.10.1002/fld.1811
6.
Boomsma
,
K.
, and
Poulikakos
,
D.
,
2002
, “
The Effects of Compression and Pore Size Variations on the Liquid Flow Characteristics in Metal Foams
,”
ASME J. Fluids Eng.
,
124
(
1
), pp.
263
272
.10.1115/1.1429637
7.
Abdelhamid
,
M.
, and
Czekanski
,
A.
,
2018
, “
Impact of the Lattice Angle on the Effective Properties of the Octet-Truss Lattice Structure
,”
ASME J. Eng. Mater. Technol.
,
140
(
4
), p.
041010
.10.1115/1.4040409
8.
Hernández-Nava
,
E.
,
Smith
,
C.
,
Derguti
,
F.
,
Tammas-Williams
,
S.
,
Léonard
,
F.
,
Withers
,
P. J.
,
Todd
,
I.
, and
Goodall
,
R.
,
2015
, “
The Effect of Density and Feature Size on Mechanical Properties of Isostructural Metallic Foams Produced by Additive Manufacturing
,”
Acta Mater.
,
85
, pp.
387
395
.10.1016/j.actamat.2014.10.058
9.
Nagesha
,
B.
,
Dhinakaran
,
V.
,
Shree
,
M. V.
,
Kumar
,
K. M.
,
Chalawadi
,
D.
, and
Sathish
,
T.
,
2020
, “
Review on Characterization and Impacts of the Lattice Structure in Additive Manufacturing
,”
Mater. Today: Proc.
,
21
, pp.
916
919
.10.1016/j.matpr.2019.08.158
10.
Li
,
C.
,
Lei
,
H.
,
Zhang
,
Z.
,
Zhang
,
X.
,
Zhou
,
H.
,
Wang
,
P.
, and
Fang
,
D.
,
2020
, “
Architecture Design of Periodic Truss-Lattice Cells for Additive Manufacturing
,”
Addit. Manuf.
,
34
, p.
101172
.10.1016/j.addma.2020.101172
11.
Mishra
,
A.
,
Korba
,
D.
,
Kaur
,
I.
,
Singh
,
P.
, and
Li
,
L.
,
2023
, “
Prediction and Validation of Flow Properties in Porous Lattice Structures
,”
ASME J. Fluids Eng.
,
145
(
4
), p.
041402
.10.1115/1.4056524
12.
Kim
,
P.
, and
Park
,
J.
,
2023
, “
An Approximate Method for Buckling Analysis and Optimization of Composite Lattice Conical Panels Considering Geometric Parameters
,”
Int. J. Aeronaut. Space Sci.
,
24
(
5
), pp.
1244
1256
.10.1007/s42405-023-00589-1
13.
Queheillalt
,
D. T.
,
Murty
,
Y.
, and
Wadley
,
H. N.
,
2008
, “
Mechanical Properties of an Extruded Pyramidal Lattice Truss Sandwich Structure
,”
Scr. Mater.
,
58
(
1
), pp.
76
79
.10.1016/j.scriptamat.2007.08.041
14.
Ye
,
G.
,
Bi
,
H.
, and
Hu
,
Y.
,
2020
, “
Compression Behaviors of 3D Printed Pyramidal Lattice Truss Composite Structures
,”
Compos. Struct.
,
233
, p.
111706
.10.1016/j.compstruct.2019.111706
15.
Shen
,
Y.
,
Xu
,
Y.
,
Sheng
,
X.
,
Wan
,
S.
, and
Yin
,
X.
,
2023
, “
Vibration Energy Transfer Characteristics of Panels With Multiple Coupling Forms in Satellites
,”
Int. J. Aeronaut. Space Sci.
,
24
(
5
), pp.
1231
1243
.10.1007/s42405-023-00576-6
16.
Chang
,
C.
,
Wu
,
W.
,
Zhang
,
H.
,
Chen
,
J.
,
Xu
,
Y.
,
Lin
,
J.
, and
Ding
,
L.
,
2021
, “
Mechanical Characteristics of Superimposed 316 L Lattice Structures Under Static and Dynamic Loading
,”
Adv. Eng. Mater.
,
23
(
7
), p.
2001536
.10.1002/adem.202001536
17.
Helou
,
M.
, and
Kara
,
S.
,
2018
, “
Design, Analysis and Manufacturing of Lattice Structures: An Overview
,”
Int. J. Comput. Integr. Manuf.
,
31
(
3
), pp.
243
261
.10.1080/0951192X.2017.1407456
18.
Nield
,
D. A.
, and
Bejan
,
A.
,
2006
,
Convection in Porous Media
, Vol.
3
,
Springer, New York
.
19.
Park
,
S.
,
Lee
,
J.-W.
, and
Popov
,
B. N.
,
2012
, “
A Review of Gas Diffusion Layer in PEM Fuel Cells: Materials and Designs
,”
Int. J. Hydrogen Energy
,
37
(
7
), pp.
5850
5865
.10.1016/j.ijhydene.2011.12.148
20.
Shirvan
,
K. M.
,
Ellahi
,
R.
,
Mirzakhanlari
,
S.
, and
Mamourian
,
M.
,
2016
, “
Enhancement of Heat Transfer and Heat Exchanger Effectiveness in a Double Pipe Heat Exchanger Filled With Porous Media: Numerical Simulation and Sensitivity Analysis of Turbulent Fluid Flow
,”
Appl. Therm. Eng.
,
109
, pp.
761
774
.10.1016/j.applthermaleng.2016.08.116
21.
Kumar
,
P.
, and
Topin
,
F.
,
2017
, “
State-of-the-Art of Pressure Drop in Open-Cell Porous Foams: Review of Experiments and Correlations
,”
ASME J. Fluids Eng.
,
139
(
11
), p.
111401
.10.1115/1.4037034
22.
Wang
,
M.
,
Wang
,
J.
,
Pan
,
N.
, and
Chen
,
S.
,
2007
, “
Mesoscopic Predictions of the Effective Thermal Conductivity for Microscale Random Porous Media
,”
Phys. Rev. E
,
75
(
3
), p.
036702
.10.1103/PhysRevE.75.036702
23.
Chen
,
L.
,
He
,
A.
,
Zhao
,
J.
,
Kang
,
Q.
,
Li
,
Z.-Y.
,
Carmeliet
,
J.
,
Shikazono
,
N.
, and
Tao
,
W.-Q.
,
2022
, “
Pore-Scale Modeling of Complex Transport Phenomena in Porous Media
,”
Prog. Energy Combust. Sci.
,
88
, p.
100968
.10.1016/j.pecs.2021.100968
24.
Fang
,
Y.
,
Yang
,
Z.
,
Ma
,
Y.
,
Li
,
Q.
, and
Du
,
X.
,
2021
, “
Study of Unsteady Flow Through and Around an Array of Isolated Square Cylinders
,”
ASME J. Fluids Eng.
,
143
(
3
), p.
031303
.10.1115/1.4048929
25.
Aslan
,
E.
,
Taymaz
,
I.
, and
Benim
,
A. C.
,
2015
, “
Investigation of LBM Curved Boundary Treatments for Unsteady Flows
,”
Eur. J. Mech.-B/Fluids
,
51
, pp.
68
74
.10.1016/j.euromechflu.2015.01.004
26.
Krüger
,
T.
,
Kusumaatmaja
,
H.
,
Kuzmin
,
A.
,
Shardt
,
O.
,
Silva
,
G.
, and
Viggen
,
E. M.
,
2017
, “
The Lattice Boltzmann Method
,”
Springer Int. Publishing
,
10
(
978-3
), pp.
4
15
.
27.
Yang
,
J.
,
Zhou
,
M.
,
Li
,
S. Y.
,
Bu
,
S. S.
, and
Wang
,
Q. W.
,
2014
, “
Three-Dimensional Numerical Analysis of Turbulent Flow in Porous Media Formed by Periodic Arrays of Cubic, Spherical, or Ellipsoidal Particles
,”
ASME J. Fluids Eng.
,
136
(
1
), p.
011102
.10.1115/1.4025365
28.
Jeong
,
N.
,
Choi
,
D. H.
, and
Lin
,
C.-L.
,
2006
, “
Prediction of Darcy–Forchheimer Drag for Micro-Porous Structures of Complex Geometry Using the Lattice Boltzmann Method
,”
J. Micromech. Microeng.
,
16
(
10
), pp.
2240
2250
.10.1088/0960-1317/16/10/042
29.
Lee
,
S.
, and
Yang
,
J.
,
1997
, “
Modeling of Darcy-Forchheimer Drag for Fluid Flow Across a Bank of Circular Cylinders
,”
Int. J. Heat Mass Transfer
,
40
(
13
), pp.
3149
3155
.10.1016/S0017-9310(96)00347-X
30.
Lu
,
J. H.
,
Lei
,
H. Y.
, and
Dai
,
C. S.
,
2018
, “
A Unified Thermal Lattice Boltzmann Equation for Conjugate Heat Transfer Problem
,”
Int. Journal Heat Mass Transfer
,
126
, pp.
1275
1286
.10.1016/j.ijheatmasstransfer.2018.06.031
31.
Kao
,
P.-H.
, and
Yang
,
R.-J.
,
2007
, “
Simulating Oscillatory Flows in Rayleigh-Bénard Convection Using the Lattice Boltzmann Meothd
,”
Int. J. Heat Mass Transfers
,
50
(
17–18
), pp.
3315
3328
.10.1016/j.ijheatmasstransfer.2007.01.035
32.
He
,
X.
,
Chen
,
S.
, and
Doolen
,
G. D.
,
1998
, “
A Novel Thermal Model for the Lattice Boltzmann Method in Incompressible Limit
,”
J. Comput. Phys.
,
146
(
1
), pp.
282
300
.10.1006/jcph.1998.6057
33.
Clever
,
R. M.
, and
Busse
,
F. H.
,
1974
, “
Transition to Time-Dependent Convection
,”
J. Fluid Mech.
,
65
(
4
), pp.
625
645
.10.1017/S0022112074001571
34.
Gebart
,
B. R.
,
1992
, “
Permeability of Unidirectional Reinforcements for RTM
,”
J. Composite Materials
,
26
(
8
), pp.
1100
1133
.10.1177/002199839202600802
35.
Nabovati
,
A.
,
Llewellin
,
E. W.
, and
Sousa
,
A. C.
,
2009
, “
A General Model for the Permeability of Fibrous Porous Media Based on Fluid Flow Simulations Using the Lattice Boltzmann Method
,”
Compos. Part A: Appl. Sci. Manuf.
,
40
(
6–7
), pp.
860
869
.10.1016/j.compositesa.2009.04.009
You do not currently have access to this content.