Abstract
The lattice Boltzmann method (LBM) is utilized to numerically investigate the permeability and effective thermal conductivity of simple cubic and body-centered truss structures. The key objective of this paper is to analyze how different geometric parameters affect the macroscopic properties of these truss structures that are increasingly used in advanced engineering applications due to their unique thermal-fluid characteristics. Simple cubic and body-centered cubic (SC-BCC) lattice structures are modeled, and the simulations are performed to determine their permeability and effective thermal conductivity. The findings highlight that the rod diameter and simple-cubic diameter significantly influence porosity, permeability, and thermal conductivity. Larger rod diameters generally result in higher porosity and permeability but may reduce thermal conductivity. Conversely, smaller simple-cubic diameters tend to enhance thermal conductivity. These results can optimize the design and application of truss structures in heat exchangers, cooling systems, and other areas where efficient thermal management and fluid flow are critical. The study concludes that LBM is an effective tool for predicting the thermal-fluid behavior of complex porous structures, providing valuable insights for the engineering design of advanced materials.