Abstract

The transient load fluctuations on the runner blades of prototype hydraulic turbines during load variations are one of the main causes of fatigue and eventual structural failure. A clear understanding of the dynamic loads on the runner blades is required to detect the source of the fluctuations. In this paper, an experimental investigation of vortex rope formation and mitigation in a prototype Kaplan turbine, namely, Porjus U9, is carried out. Synchronized unsteady pressure and strain measurements were performed on a runner blade during steady-state and load variation under off-cam condition. The normalized pressure fluctuation during load variations remained approximately within ±0.2Pref for all the pressure transducers installed on the blade pressure side and is even slightly lower during the transient cycle. Higher pressure fluctuations were found on the blade suction side, approximately four times higher than that of on the pressure side. The synchronous and asynchronous components of the vortex rope were clearly observed at the low discharge operating point and transient cycles. The spectral analysis of the pressure signals showed that the synchronous component appears before the asynchronous component during the load reduction, and it lasts longer during the load increase. These frequencies slightly change during the load variation. In addition, the results proved that the strain fluctuation component on the runner blade arises from the synchronous component of the vortex rope at low discharge while the asynchronous component influence is negligible.

References

References
1.
Liu
,
X.
,
Luo
,
Y.
, and
Wang
,
Z.
,
2016
, “
A Review on Fatigue Damage Mechanism in Hydro Turbines
,”
Renewable Sustainable Energy Rev.
,
54
, pp.
1
14
.10.1016/j.rser.2015.09.025
2.
Trivedi
,
C.
,
Gandhi
,
B.
, and
Michel
,
C. J.
,
2013
, “
Effect of Transients on Francis Turbine Runner Life: A Review
,”
J. Hydraul. Res.
,
51
(
2
), pp.
121
132
.10.1080/00221686.2012.732971
3.
Valentín
,
D.
,
Presas
,
A.
,
Egusquiza
,
E.
,
Valero
,
C.
,
Egusquiza
,
M.
, and
Bossio
,
M.
,
2017
, “
Power Swing Generated in Francis Turbines by Part Load and Overload Instabilities
,”
Energies
,
10
(
12
), p.
2124
.10.3390/en10122124
4.
Seidel
,
U.
,
Mende
,
C.
, and
Hübner
,
B.
,
2014
, “
Dynamic Loads in Francis Runners and Their Impact on Fatigue Life
,”
27th IAHR Symposium on Hydraulic Machinery and Systems
,
IOP Publishing
,
Montreal, QC, Canada
, Sept. 22–26, p.
032054
.
5.
Huang
,
X.
,
Chamberland-Lauzon
,
J.
, and
Oram
,
C.
,
2014
, “
Fatigue Analyses of the Prototype Francis Runners Based on Site Measurements and Simulations
,”
27th IAHR Symposium on Hydraulic Machinery and Systems
,
IOP Publishing
,
Montreal, QC, Canada
, Sept. 22–26, p.
012014
.10.1088/1755-1315/22/1/012014
6.
Nishi
,
M.
,
Kubota
,
T.
, and
Matsunaga
,
S.
,
1980
, “
Study on Swirl Flow and Surge in an Elbow Type Draft Tube
,”
Tenth IAHR Symposium on Hydraulic Machinery and Cavitation
, Tokyo, Japan, Sept. 28–Oct. 2, pp.
557
568
.https://www.researchgate.net/publication/280886636_Study_on_Swirl_Flow_and_Surge_in_an_Elbow_Type_Draft_Tube
7.
Fanelli
,
M.
,
1989
, “
The Vortex Rope in the Draft Tube of Francis Turbines Operating at Partial Load: A Proposal for a Mathematical Model
,”
J. Hydraul. Res.
,
27
(
6
), pp.
769
807
.10.1080/00221688909499108
8.
Pasche
,
S.
,
Avellan
,
F.
, and
Gallaire
,
F.
,
2017
, “
Part Load Vortex Rope as a Global Unstable Mode
,”
ASME J. Fluids Eng.
,
139
(
5
), p.
051102
.10.1115/1.4035640
9.
Susan-Resiga
,
R.
,
Vu
,
T. C.
, and
Muntean
,
S.
,
2006
, “
Jet Control of the Draft Tube Vortex Rope in Francis Turbines at Partial Discharge
,”
23rd IAHR Symposium on Hydraulic Machinery and Systems
,
IOP Publishing
,
Yokohama, Japan
, Oct. 17–21, pp.
17
21
.https://www.researchgate.net/publication/228370287_Jet_control_of_the_draft_tube_vortex_rope_in_Francis_turbines_at_partial_discharge
10.
Bosioc
,
A. I.
,
Susan-Resiga
,
R.
, and
Muntean
,
S.
,
2012
, “
Unsteady Pressure Analysis of a Swirling Flow With Vortex Rope and Axial Water Injection in a Discharge Cone
,”
ASME J. Fluids Eng.
,
134
(
8
), p.
081104
.10.1115/1.4007074
11.
Zhang
,
R.
,
Mao
,
F.
, and
Wu
,
J.
,
2009
, “
Characteristics and Control of the Draft-Tube Flow in Part-Load Francis Turbine
,”
ASME J. Fluids Eng.
,
131
(
2
), p.
021101
.10.1115/1.3002318
12.
Tănasă
,
C.
,
Susan-Resiga
,
R.
, and
Muntean
,
S.
,
2013
, “
Flow-Feedback Method for Mitigating the Vortex Rope in Decelerated Swirling Flows
,”
ASME J. Fluids Eng.
,
135
(
6
), p.
061304
.10.1115/1.4023946
13.
Kirschner
,
O.
,
Schmidt
,
H.
, and
Ruprecht
,
A.
,
2010
, “
Experimental Investigation of Vortex Control With an Axial Jet in the Draft Tube of a Model Pump-Turbine
,”
25th IAHR Symposium on Hydraulic Machinery and Systems
,
IOP Publishing
,
Timisoara, Romania
, Sept. 20–24, p.
012092
.https://iopscience.iop.org/article/10.1088/1755-1315/12/1/012092
14.
Lewis
,
B. J.
,
Cimbala
,
J. M.
, and
Wouden
,
A. M.
,
2012
, “
Investigation of Distributor Vane Jets to Decrease the Unsteady Load on Hydro Turbine Runner Blades
,”
26th IAHR Symposium on Hydraulic Machinery and Systems
,
IOP Publishing
,
Beijing, China
, Aug. 19–23, p.
022006
.https://iopscience.iop.org/article/10.1088/1755-1315/15/2/022006
15.
Gogstad
,
P. J.
,
2017
, “
Experimental Investigation and Mitigation of Pressure Pulsations in Francis Turbines
,” Ph.D. dissertation,
NTNU
,
Trondheim
.
16.
Štefan
,
D.
,
Rudolf
,
P.
, and
Muntean
,
S.
,
2017
, “
Proper Orthogonal Decomposition of Self-Induced Instabilities in Decelerated Swirling Flows and Their Mitigation Through Axial Water Injection
,”
ASME J. Fluids Eng.
,
139
(
8
), p.
081101
.10.1115/1.4036244
17.
Amiri
,
K.
,
Mulu
,
B.
,
Raisee
,
M.
, and
Cervantes
,
M. J.
,
2016
, “
Unsteady Pressure Measurements on the Runner of a Kaplan Turbine During Load Acceptance and Load Rejection
,”
J. Hydraul. Res.
,
54
(
1
), pp.
56
73
.10.1080/00221686.2015.1110626
18.
Goyal
,
R.
,
Cervantes
,
M. J.
, and
Gandhi
,
B. K.
,
2017
, “
Vortex Rope Formation in a High Head Model Francis Turbine
,”
ASME J. Fluids Eng.
,
139
(
4
), p.
041102
.10.1115/1.4035224
19.
Ciocan
,
G. D.
,
Iliescu
,
M. S.
,
Vu
,
T. C.
,
Nennemann
,
B.
, and
Avellan
,
F.
,
2007
, “
Experimental Study and Numerical Simulation of the FLINDT Draft Tube Rotating Vortex
,”
ASME J. Fluids Eng.
,
129
(
2
), pp.
146
158
.10.1115/1.2409332
20.
Favrel
,
A.
,
Müller
,
A.
, and
Landry
,
C.
,
2015
, “
Study of the Vortex-Induced Pressure Excitation Source in a Francis Turbine Draft Tube by Particle Image Velocimetry
,”
Exp. Fluids
,
56
(
12
), p.
215
.10.1007/s00348-015-2085-5
21.
Duparchy
,
F.
,
Favrel
,
A.
, and
Lowys
,
P.
,
2015
, “
Analysis of the Part Load Helical Vortex Rope of a Francis Turbine Using on-Board Sensors
,”
Ninth International Symposium on Cavitation (CAV2015)
,
IOP Publishing
,
Lausanne, Switzerland
, Dec. 6–10, p.
12061
.https://iopscience.iop.org/article/10.1088/1742-6596/656/1/012061
22.
Houde
,
S.
,
Fraser
,
R.
, and
Ciocan
,
G. D.
,
2012
, “
Part 1–Experimental Study of the Pressure Fluctuations on Propeller Turbine Runner Blades During Steady-State Operation
,”
26th IAHR Symposium on Hydraulic Machinery and Systems
,
IOP Publishing
,
Beijing, China
, Aug. 19–23, p.
022004
.https://iopscience.iop.org/article/10.1088/1755-1315/15/2/022004
23.
Trivedi
,
C.
,
Gogstad
,
P. J.
, and
Dahlhaug
,
O. G.
,
2018
, “
Investigation of the Unsteady Pressure Pulsations in the Prototype Francis Turbines–Part 1: Steady State Operating Conditions
,”
Mech. Syst. Signal Process.
,
108
, pp.
188
202
.10.1016/j.ymssp.2018.02.007
24.
Trivedi
,
C.
,
Gogstad
,
P. J.
, and
Dahlhaug
,
O. G.
,
2017
, “
Investigation of the Unsteady Pressure Pulsations in the Prototype Francis Turbines During Load Variation and Startup
,”
Renewable Sustainable Energy Rev.
,
9
(
6
), p.
064502
.10.1063/1.4994884
25.
Gagnon
,
M.
,
Jobidon
,
N.
, and
Lawrence
,
M.
,
2014
, “
Optimization of Turbine Startup: Some Experimental Results From a Propeller Runner
,”
27th IAHR Symposium on Hydraulic Machinery and Systems
,
IOP Publishing
,
Montreal, QC, Canada
, Sept. 22–26, p.
032022
.https://iopscience.iop.org/article/10.1088/1755-1315/22/3/032022
26.
International Electrotechnical Commission
,
1999
, “
Hydraulic Turbines, Storage Pumps and Pump-Turbines—Model Acceptance Tests
,”
International Electrotechnical Commission
,
Geneva, Switzerland
, Standard No. IEC 60193.
27.
Nicolet
,
C.
,
2007
, “
Hydroacoustic Modelling and Numerical Simulation of Unsteady Operation of Hydroelectric Systems
,” Ph.D. dissertation,
EPFL
,
Lausanne, Switzerland
.
28.
Presas
,
A.
,
Luo
,
Y.
,
Wang
,
Z.
, and
Guo
,
B.
,
2019
, “
Fatigue Life Estimation of Francis Turbines Based on Experimental Strain Measurements: Review of the Actual Data and Future Trends
,”
Renewable Sustainable Energy Rev.
,
102
, pp.
96
110
.10.1016/j.rser.2018.12.001
29.
Amiri
,
K.
,
2016
, “
Experimental Investigation of a Kaplan Runner Under Steady-State and Transient Operations
,” Ph.D. dissertation,
Luleå University of Technology Lulea
,
Lulea, Sweden
.
30.
Zhou
,
L.
,
Wang
,
Z.
,
Xiao
,
R.
, and
Luo
,
Y.
,
2007
, “
Analysis of Dynamic Stresses in Kaplan Turbine Blades
,”
Eng. Comput.
,
24
(
8
), pp.
753
762
.10.1108/02644400710833288
31.
Luo
,
Y.
,
Wang
,
Z.
,
Zhang
,
J.
,
Zeng
,
J.
,
Lin
,
J.
, and
Wang
,
G.
,
2013
, “
Vibration and Fatigue Caused by Pressure Pulsations Originating in the Vaneless Space for a Kaplan Turbine With High Head
,”
Eng. Comput.
,
30
(
3
), pp.
448
463
.10.1108/02644401311314376
32.
Zhang
,
M.
,
Valentín
,
D.
,
Valero
,
C.
,
Egusquiza
,
M.
, and
Egusquiza
,
E.
,
2019
, “
Failure Investigation of a Kaplan Turbine Blade
,”
Eng. Failure Anal.
,
97
, pp.
690
700
.10.1016/j.engfailanal.2019.01.056
33.
Amiri
,
K.
,
Cervantes
,
M. J.
, and
Mulu
,
B.
,
2015
, “
Experimental Investigation of the Hydraulic Loads on the Runner of a Kaplan Turbine Model and the Corresponding Prototype
,”
J. Hydraul. Res.
,
53
(
4
), pp.
452
465
.10.1080/00221686.2015.1040085
You do not currently have access to this content.