Abstract

In this study, computational fluid dynamics (cfd) software and detached eddy simulation turbulence model were used to simulate butterfly valves with different designs. The effects of shaft diameters on the value and the fluctuation of valve disk torque were studied, and the physical reason was discussed. The simulation results were verified by comparing with the experimental data. The findings revealed that with the closing of the valve, the hydraulic torque of the valve disk first increases and then decreases. Meanwhile, the torque decreases gradually with the increase of the shaft diameter. The variation of torque is caused by the change of pressure on both sides of the valve disk. The result also indicates that the fluctuation of torque is induced by the flow separation phenomenon occurs on the valve disk. The fluctuation is significant for the valve opening from 20% to 60%. The strength of the torque fluctuation is greater for the smaller shaft diameter. This study provides a theoretical basis for the design and optimization of butterfly valves.

References

References
1.
Song
,
T.
,
Hartge
,
E.-U.
,
Heinrich
,
S.
,
Shen
,
L.
, and
Werther
,
J.
,
2018
, “
Chemical Looping Combustion of High Sodium Lignite in the Fluidized Bed: Combustion Performance and Sodium Transfer
,”
J. Greenhouse Gas Control
,
70
, pp.
22
31
.10.1016/j.ijggc.2018.01.005
2.
Li
,
X.
,
Li
,
B.
,
Yu
,
B.
,
Ren
,
Y.
, and
Chen
,
B.
,
2019
, “
Calculation of Cavitation Evolution and Associated Turbulent Kinetic Energy Transport Around a NACA66 Hydrofoil
,”
J. Mech. Sci. Technol.
,
33
(
3
), pp.
1231
1241
.10.1007/s12206-019-0223-3
3.
Lin
,
Z.
,
Liu
,
Z.
,
Liu
,
Q.
, and
Li
,
Y.
,
2020
, “
Fluidization Characteristics of Particles in a Groove Induced by Horizontal Air Flow
,”
Powder Technol.
,
363
, pp.
442
447
.10.1016/j.powtec.2020.01.022
4.
Mitomi
,
M.
, and
Nagano
,
H.
,
2014
, “
Long-Distance Loop Heat Pipe for Effective Utilization of Energy
,”
Int. J. Heat Mass Transfer
,
77
, pp.
777
784
.10.1016/j.ijheatmasstransfer.2014.06.001
5.
Zheng
,
X.
,
Lin
,
Z.
, and
Xu
,
B.
,
2019
, “
Thermal Conductivity and Sorption Performance of Nano-Silver Powder/FAPO-34 Composite Fin
,”
Appl. Therm. Eng.
,
160
, pp.
114055
114094
.10.1016/j.applthermaleng.2019.114055
6.
Li
,
X.
,
Chen
,
B.
,
Luo
,
X.
, and
Zhu
,
Z.
,
2020
, “
Effects of Flow Pattern on Hydraulic Performance and Energy Conversion Characterisation in a Centrifugal Pump
,”
Renewable Energy
,
151
(
5
), pp.
475
487
.10.1016/j.renene.2019.11.049
7.
Corbera Caraballo
,
S.
,
Olazagoitia Rodríguez
,
J. L.
,
Lozano Ruiz
,
J. A.
, and
Álvarez Fernández
,
R.
,
2017
, “
Optimization of a Butterfly Valve Disc Using 3D Topology and Genetic Algorithms
,”
Struct. Multidiscip. Optim.
,
56
(
4
), pp.
941
957
.10.1007/s00158-017-1694-4
8.
Sun
,
X.
,
Kim
,
H. S.
,
Yang
,
S. D.
,
Kim
,
C. K.
, and
Yoon
,
J. Y.
,
2017
, “
Numerical Investigation of the Effect of Surface Roughness on the Flow Coefficient of an Eccentric Butterfly Valve
,”
J. Mech. Sci. Technol.
,
31
(
6
), pp.
2839
2848
.10.1007/s12206-017-0527-0
9.
Toro
,
A. D.
,
Johnson
,
M. C.
, and
Spall
,
R. E.
,
2015
, “
Computational Fluid Dynamics Investigation of Butterfly Valve Performance Factors
,”
J. Am. Water Works Assoc.
,
107
(
5
), pp.
E243
E254
.10.5942/jawwa.2015.107.0052
10.
Song
,
X. G.
,
Wang
,
L.
, and
Park
,
Y. C.
,
2009
, “
Analysis and Optimization of a Butterfly Valve Disc
,”
Proc. Inst. Mech. Eng., Part E
,
223
(
2
), pp.
81
89
.10.1243/09544089JPME236
11.
Yi
,
S. I.
,
Shin
,
M. K.
,
Shin
,
M. S.
,
Yoon
,
J. Y.
, and
Park
,
G. J.
,
2008
, “
Optimization of the Eccentric Check Butterfly Valve Considering the Flow Characteristics and Structural Safety
,”
Proc. Inst. Mech. Eng., Part E
,
222
(
1
), pp.
63
73
.10.1243/09544089JPME151
12.
Wang
,
P.
,
Liu
,
Y.
, and
Hu
,
Z.
,
2016
, “
Rapid Close of a Butterfly Valve Placed in a Curved Channel: A Computational Study of Unsteady Steam Flow and Aerodynamic Torque
,”
ASME Paper No. UNSP V008T26A003
.10.1115/UNSP V008T26A003
13.
Lattouf
,
D.
, and
Huynh
,
B. P.
,
2017
, “
Flow Across a Butterfly Valve in a Dam Penstock
,”
ASME Paper No. IMECE2017-71322
.10.1115/IMECE2017-71322
14.
Farid
,
V.
, and
Mahdi
,
M.
,
2012
, “
Analysis of the Hydrodynamic Torque Effects on Large Size Butterfly Valves and Comparing Results With AWWA C504 Standard Recommendations
,”
J. Mech. Sci. Technol.
,
26
(
9
), pp.
2799
2806
.10.1007/s12206-012-0733-8
15.
Morris
,
M. J.
, and
Dutton
,
J.
,
1989
, “
Compressible Flowfield Characteristics of Butterfly Valves
,”
ASME J. Fluids Eng.
,
111
(
4
), pp.
400
407
.10.1115/1.3243659
16.
Leutwyler
,
Z.
, and
Dalton
,
C.
,
2008
, “
A CFD Study of the Flow Field, Resultant Force, and Aerodynamic Torque on a Symmetric Disk Butterfly Valve in a Compressible Fluid
,”
ASME J. Pressure Vessel Technol.
,
130
(
2
), pp.
1030
1036
.10.1115/1.2891929
17.
Morris
,
M. J.
, and
Dutton
,
J. C.
,
1989
, “
Aerodynamic Torque Characteristics of Butterfly Valves in Compressible Flow
,”
ASME J. Fluids Eng.
,
111
(
4
), pp.
392
399
.10.1115/1.3243658
18.
Naseradinmousavi
,
P.
, and
Nataraj
,
C.
,
2011
, “
Nonlinear Mathematical Modeling of Butterfly Valves Driven by Solenoid Actuators
,”
Appl. Math. Modell.
,
35
(
5
), pp.
2324
2335
.10.1016/j.apm.2010.11.036
19.
Liu
,
B.
,
Zhao
,
J.
, and
Qian
,
J.
,
2017
, “
Numerical Study of Solid Particle Erosion in Butterfly Valve
,”
Second International Conference on Design, Materials, and Manufacturing (ICDMM)
,
Beijing, China
.10.1088/1757-899X/220/1/012018
20.
Baran
,
G.
,
Catana
,
I.
,
Magheti
,
I.
,
Safta
,
C. A.
, and
Savu
,
M.
,
2010
, “
Controlling the Cavitation Phenomenon of Evolution on a Butterfly Valve
,”
IOP Conf. Ser.: Earth Environ. Sci.
,
12
, p.
012100
.10.1088/1755-1315/12/1/012100
21.
Deng
,
Y. F.
,
He
,
C. X.
,
Wang
,
P.
, and
Liu
,
Y. Z.
,
2020
, “
Unsteady Behaviors of Separated Flow Over a Finite Blunt Plate at Different Inclination Angles
,”
Phys. Fluids
,
3
(
32
), p.
035111
.10.1063/1.5143508
22.
Zhang
,
Q. S.
, and
Liu
,
Y. Z.
,
2017
, “
Separated Flow Over Blunt Plates With Different Chord-to-Thickness Ratios: Unsteady Behaviors and Wall-Pressure Fluctuations
,”
Exp. Therm. Fluid Sci.
,
84
, pp.
199
216
.10.1016/j.expthermflusci.2017.02.007
23.
Li
,
X.
,
Shen
,
T.
,
Li
,
P.
,
Guo
,
X.
, and
Zhu
,
Z.
,
2020
, “
Extended Compressible Thermal Cavitation Model for the Numerical Simulation of Cryogenic Cavitating Flow
,”
Int. J. Hydrogen Energy
,
45
(
16
), pp.
10104
10118
.10.1016/j.ijhydene.2020.01.192
24.
Rafiee
,
S. E.
, and
Sadeghiazad
,
M. M.
,
2017
, “
Experimental and 3D CFD Investigation on Heat Transfer and Energy Separation Inside a Counter Flow Vortex Tube Using Different Shapes of Hot Control Valves
,”
Appl. Therm. Eng.
,
110
, pp.
648
664
.10.1016/j.applthermaleng.2016.08.166
25.
Tao
,
J.
,
Lin
,
Z.
,
Ma
,
C.
,
Ye
,
J.
,
Zhu
,
Z.
,
Li
,
Y.
, and
Mao
,
W.
,
2020
, “
An Experimental and Numerical Study of Regulating Performance and Flow Loss in a V-Port Ball Valve
,”
ASME J. Fluids Eng
,
142
(
2
), p.
021207
.10.1115/1.4044986
26.
Lin
,
Z.
,
Ma
,
G.
,
Cui
,
B.
,
Li
,
Y.
,
Zhu
,
Z.
, and
Tong
,
N.
,
2016
, “
Influence of Flashboard Location on Flow Resistance Properties and Internal Features of Gate Valve Under the Variable Condition
,”
J. Nat. Gas Sci. Eng.
,
33
, pp.
108
117
.10.1016/j.jngse.2016.05.025
27.
Lin
,
Z.
,
Sun
,
X.
,
Yu
,
T.
,
Zhang
,
Y.
,
Li
,
Y.
, and
Zhu
,
Z.
,
2020
, “
Gas–Solid Two-Phase Flow and Erosion Calculation of Gate Valve Based on the CFD-DEM Model
,”
Powder Technol.
,
366
, pp.
395
407
.10.1016/j.powtec.2020.02.050
28.
Lun
,
Y.
,
Lin
,
L.
,
He
,
H.
,
Ye
,
X.
,
Zhu
,
Z.
, and
Wei
,
Y.
,
2019
, “
Effects of Vortex Structure on Performance Characteristics of a Multiblade Fan With Inclined Tongue
,”
Proc. Inst. Mech. Eng. Part A
,
233
(
8
), pp.
1007
1021
.10.1177/0957650919840964
29.
Chen
,
X.
,
Li
,
X.
, and
Zhu
,
Z.
,
2019
, “
Effects of Dimensional Wall Temperature on Velocity-Temperature Correlations in Supersonic Turbulent Channel Flow of Thermally Perfect Gas
,”
Sci. China Phys., Mech. Astron.
,
62
(
6
), p.
064711
.10.1007/s11433-018-9318-4
30.
Jin
,
Z. J.
,
Qiu
,
C.
,
Jiang
,
C. H.
,
Wu
,
J. Y.
, and
Qian
,
J. Y.
,
2020
, “
Effect of Valve Core Shapes on Cavitation Flow Through a Sleeve Regulating Valve
,”
J. Zhejiang Univ. Sci. A
,
21
(
1
), pp.
1
14
.10.1631/jzus.A1900528
31.
Liu
,
Q.
,
Ye
,
J.
,
Zhang
,
G.
,
Lin
,
Z.
,
Xu
,
H.
,
Jin
,
H.
, and
Zhu
,
Z.
,
2019
, “
Study on the Metrological Performance of a Swirlmeter Affected by Flow Regulation With a Sleeve Valve
,”
Flow Meas. Instrum.
,
67
, pp.
83
94
.10.1016/j.flowmeasinst.2019.04.003
32.
Liu
,
Q.
,
Ye
,
J.-h.
,
Zhang
,
G.
,
Lin
,
Z.
,
Xu
,
H.-G.
, and
Zhu
,
Z.-C.
,
2019
, “
Metrological Performance Investigation of Swirl Flowmeter Affected by Vortex Inflow
,”
J. Mech. Sci. Technol.
,
33
(
6
), pp.
2671
2680
.10.1007/s12206-019-0515-7
33.
Qian
,
J.
,
Hou
,
C.
,
Wu
,
J.
,
Gao
,
Z.
, and
Jin
,
Z.
,
2019
, “
Aerodynamics Analysis of Superheated Steam Flow Through Multi-Stage Perforated Plates
,”
Int. J. Heat Mass Transfer
,
141
, pp.
48
57
.10.1016/j.ijheatmasstransfer.2019.06.061
34.
Qian
,
J.
,
Chen
,
M.
,
Gao
,
Z.
, and
Jin
,
Z.
,
2019
, “
Mach Number and Energy Loss Analysis Inside Multi-Stage Tesla Valves for Hydrogen Decompression
,”
Energy
,
179
, pp.
647
654
.10.1016/j.energy.2019.05.064
35.
Qian
,
J. Y.
,
Chen
,
M. R.
,
Liu
,
X. L.
, and
Jin
,
Z. J.
,
2019
, “
A Numerical Investigation of the Flow of Nanofluids Through a Micro Tesla Valve
,”
J. Zhejiang Univ. Sci. A
,
20
(
1
), pp.
50
60
.10.1631/jzus.A1800431
36.
Lin
,
Z.
,
Ma
,
C.
,
Xu
,
H.
,
Li
,
X.
,
Cui
,
B.
, and
Zhu
,
Z.
,
2017
, “
Numerical and Experimental Studies on Hydrodynamic Characteristics of Sleeve Regulating Valves
,”
Flow Meas. Instrum.
,
53
, pp.
279
285
.10.1016/j.flowmeasinst.2016.12.001
37.
Wang
,
Z.
,
Wei
,
Y.
, and
Qian
,
Y.
,
2020
, “
A Bounce Back-Immersed Boundary-Lattice Boltzmann Model for Curved Boundary
,”
Appl. Math. Modell.
,
81
, pp.
428
440
.10.1016/j.apm.2020.01.012
38.
Wei
,
Y.
,
Wang
,
Z.
,
Dou
,
H.
, and
Qian
,
Y.
,
2017
, “
A Novel Two-Dimensional Coupled Lattice Boltzmann Model for Incompressible Flow in Application of Turbulence Rayleigh-Taylor Instability
,”
Comput. Fluids
,
156
, pp.
97
102
.10.1016/j.compfluid.2017.07.003
39.
Zhang
,
W.
,
Li
,
X.
, and
Zhu
,
Z.
,
2019
, “
Quantification of Wake Unsteadiness for low-Re Flow Across Two Staggered Cylinders
,”
J. Mech. Eng. Sci.
,
233
(
19–20
), pp.
6892
6909
.10.1177/0954406219866478
40.
Yang
,
H.
,
Yu
,
P.
,
Xu
,
J.
,
Ying
,
C.
,
Cao
,
W.
,
Wang
,
Y.
,
Zhu
,
Z.
, and
Wei
,
Y.
,
2019
, “
Experimental Investigations on the Performance and Noise Characteristics of a Forward-Curved Fan With the Stepped Tongue
,”
Meas. Control
,
52
(
9–10
), pp.
1480
1488
.10.1177/0020294019877482
41.
Liu
,
Y.
, and
Tan
,
L.
,
2020
, “
Theoretical Prediction Model of Tip Leakage Vortex in a Mixed Flow Pump With Tip Clearance
,”
ASME J. Fluids Eng.
,
142
(
2
), p.
021203
.10.1115/1.4044982
42.
Spalart
,
P. R.
,
2000
, “
Trends in Turbulence Treatments
,”
AIAA Paper No. 2000-2306
.10.2514/6.2000-2306.
43.
Strelets
,
M.
,
2001
, “
Detached Eddy Simulation of Massively Separated Flows
,”
AIAA Paper No. 2001-0879
.10.2514/6.2001-0879
44.
Spalart
,
P. R.
,
Deck
,
S.
,
Shur
,
M. L.
,
Squires
,
K. D.
,
Strelets
,
M. K.
, and
Travin
,
A.
,
2006
, “
A New Version of Detached-Eddy Simulation, Resistant to Ambiguous Grid Densities
,”
Theor. Comput. Fluid Dyn.
,
20
(
3
), pp.
181
195
.10.1007/s00162-006-0015-0
45.
Li
,
X.
, and
Ren
,
Y.
,
2004
, “
Detached-Eddy Simulation kε Turbulence Model and Its Application in Fire Simulations
,”
J. Tsinghua Univ.
,
44
(
8
), pp.
1126
1129
.10.16511/j.cnki.qhdxxb.2004.08.031
46.
Zhou
,
P.
,
Wang
,
F.
, and
Yang
,
M.
,
2012
, “
Internal Flow Numerical Simulation of Double-Suction Centrifugal Pump Using Des Model
,”
IOP Conf. Ser.: Earth Environ. Sci.
, 15, p.
032051
.10.1088/1755-1315/15/3/032051
47.
Yuan
,
S.
,
Si
,
Q.
,
Xue
,
F.
,
Yuan
,
J.
, and
Zhang
,
J.
,
2011
, “
Numerical Calculation of Internal Flow Induced Noise in Centrifugal Pump Volute
,”
Paiguan Jixie Gongcheng Xuebao/J. Drain. Irrig. Mach. Eng.
,
29
(
2
), pp.
93
98
.10.3969/j.issn.1674-8530.2011.02.01
48.
Zheng
,
L.
,
Liu
,
G.
,
Mao
,
J.
,
Yuan
,
Q.
,
Wang
,
S.
,
Wei
,
L.
, and
Wang
,
Z.
,
2015
, “
A Novel Numerical Simulation Method to Verify Turbulence Models for Predicting Flow Patterns in Control Valves
,”
J. Fluid Sci. Technol.
,
10
(
1
), p.
JFST0007
.10.1299/jfst.2015jfst0007
You do not currently have access to this content.