Abstract

Unintended slight curvature of a straight pipe and temperature variation in a pipe has been found to create uncertainties in tubes and pipes. Fluttering, divergence, and chaotic instabilities of slightly curved carbon nanotubes (SCCNT) conveying hot pressurized fluid are investigated in this paper. The SCCNT is modeled on the basis of large deformation strains. Their gradients are included in the strain energy expression and the velocity and its gradients in the kinetic energy derivation. In modeling the size effects, both the static and kinetic length scales in the energy equations were considered. Governing equation is derived using Lagrangian approach. The effects of geometric imperfection (which leads to cusp bifurcation), small length scale, and kinetic material length parameter on the static and dynamic instability characteristics of the pipes are studied. Analysis is performed using the eigenfunction expansion method. It is found that the material length scale parameter increase tends to shift instability to the lower fluid velocity while the kinematic material length parameter increase does not change the buckling point but lowers the frequency. In the nonlinear dynamic case, both the parameters lead to chaos of the nanotube beyond the critical fluid velocity. The thermal loading changes the sudden supercritical pitchfork bifurcation to cusp bifurcation. The increasing linear and nonlinear foundation stiffness leads the system to chaotic features after the critical point.

References

References
1.
Yan
,
Y.
,
Wang
,
W. Q.
, and
Zhang
,
L. X.
,
2010
, “
Nonlocal Effect on Axially Compressed Buckling of Triple-Walled Carbon Nanotubes Under Temperature Field
,”
Appl. Math. Model.
,
34
(
11
), pp.
3422
3429
.10.1016/j.apm.2010.02.031
2.
Mohammadi
,
B.
, and
Ghannadpour
,
S. A. M.
,
2011
, “
Energy Approach Vibration Analysis of Nonlocal Timoshenko Beam Theory
,”
Procedia Eng.
,
10
, pp.
1766
1771
.10.1016/j.proeng.2011.04.294
3.
Zhang
,
Z.
,
Liu
,
Y.
, and
Li
,
B.
,
2014
, “
Free Vibration Analysis of Fluid-Conveying Carbon Nanotube Via Wave Method
,”
Acta Mech. Solida Sin.
,
27
(
6
), pp.
626
634
.10.1016/S0894-9166(15)60007-6
4.
Iijima
,
S.
,
1991
, “
Helical Microtubules of Graphitic Carbon
,”
Nature
,
354
(
6348
), pp.
56
58
.10.1038/354056a0
5.
Rafiee
,
R.
, and
Moghadam
,
R. M.
,
2014
, “
On the Modeling of Carbon Nanotubes: A Critical Review
,”
Compos. Part B Eng.
,
56
, pp.
435
449
.10.1016/j.compositesb.2013.08.037
6.
Ghavanloo
,
E.
,
Daneshmand
,
F.
, and
Rafiei
,
M.
,
2010
, “
Vibration and Instability Analysis of Carbon Nanotubes Conveying Fluid and Resting on a Linear Viscoelastic Winkler Foundation
,”
Phys. E
,
42
(
9
), pp.
2218
2224
.10.1016/j.physe.2010.04.024
7.
Peddieson
,
J.
,
Buchanan
,
G. R.
, and
McNitt
,
R. P.
,
2003
, “
Application of Nonlocal Continuum Models to Nanotechnology
,”
Int. J. Eng. Sci.
,
41
(
3–5
), pp.
305
312
.10.1016/S0020-7225(02)00210-0
8.
Ke
,
L. L.
,
Wang
,
Y. S.
,
Yang
,
J.
, and
Kitipornchai
,
S.
,
2012
, “
Nonlinear Free Vibration of Size-Dependent Functionally Graded Microbeams
,”
Int. J. Eng. Sci.
,
50
, pp.
256
267
.10.1016/j.ijengsci.2010.12.008
9.
Eringen
,
A.
, and
Wegner
,
2003
, “
Nonlocal Continuum Field Theories
,”
Appl. Mech. Rev.
,
56
(
2
), pp.
B20
B22
.10.1115/1.1553434
10.
Bagˇdatlı
,
S. M.
,
2015
, “
Non-Linear Vibration of Nanobeams With Various Boundary Condition Based on Nonlocal Elasticity Theory
,”
Compos. Part B Eng.
,
80
, pp.
43
52
.10.1016/j.compositesb.2015.05.030
11.
Abdel-Jaber
,
M. S.
,
Al-Qaisia
,
A. A.
, and
Shatarat
,
N. K.
,
2017
, “
Nonlinear Vibrations of a SWCNT With Geometrical Imperfection Using Nonlocal Elasticity Theory
,”
Mod. Appl. Sci.
,
11
(
10
), p.
91
.10.5539/mas.v11n10p91
12.
Li
,
L.
,
Hu
,
Y.
,
Li
,
X.
, and
Ling
,
L.
,
2016
, “
Size-Dependent Effects on Critical Flow Velocity of Fluid-Conveying Microtubes Via Nonlocal Strain Gradient Theory
,”
Microfluid. Nanofluid.
,
20
(
5
), pp.
1
12
.10.1007/s10404-016-1739-9
13.
Pradiptya
,
I.
, and
Ouakad
,
H. M.
,
2018
, “
Thermal Effect on the Dynamic Behavior of Nanobeam Resonator Assuming Size-Dependent Higher-Order Strain Gradient Theory
,”
Microsyst. Technol.
,
24
(
6
), pp.
2585
2598
.10.1007/s00542-017-3671-7
14.
Li
,
L.
, and
Hu
,
Y.
,
2016
, “
Wave Propagation in Fluid-Conveying Viscoelastic Carbon Nanotubes Based on Nonlocal Strain Gradient Theory
,”
Comput. Mater. Sci.
,
112
, pp.
282
288
.10.1016/j.commatsci.2015.10.044
15.
Fang
,
B.
,
Zhen
,
Y. X.
,
Zhang
,
C. P.
, and
Tang
,
Y.
,
2013
, “
Nonlinear Vibration Analysis of Double-Walled Carbon Nanotubes Based on Nonlocal Elasticity Theory
,”
Appl. Math. Model.
,
37
(
3
), pp.
1096
1107
.10.1016/j.apm.2012.03.032
16.
Wang
,
L.
,
2009
, “
Dynamical Behaviors of Double-Walled Carbon Nanotubes Conveying Fluid Accounting for the Role of Small Length Scale
,”
Comput. Mater. Sci.
,
45
(
2
), pp.
584
588
.10.1016/j.commatsci.2008.12.006
17.
Nematollahi
,
M. S.
,
Mohammadi
,
H.
, and
Taghvaei
,
S.
,
2019
, “
Fluttering and Divergence Instability of Functionally Graded Viscoelastic Nanotubes Conveying Fluid Based on Nonlocal Strain Gradient Theory
,”
Chaos
,
29
(
3
), pp.
033108
033111
.10.1063/1.5057738
18.
Murmu
,
T.
, and
Pradhan
,
S. C.
,
2009
, “
Thermo-Mechanical Vibration of a Single-Walled Carbon Nanotube Embedded in an Elastic Medium Based on Nonlocal Elasticity Theory
,”
Comput. Mater. Sci.
,
46
(
4
), pp.
854
859
.10.1016/j.commatsci.2009.04.019
19.
Orolu
,
K. O.
,
Fashanu
,
T. A.
, and
Oyediran
,
A. A.
,
2019
, “
Cusp Bifurcation of Slightly Curved Tensioned Pipe Conveying Hot Pressurized Fluid
,”
JVC/J. Vib. Control
,
25
(
5
), pp.
1109
1121
.10.1177/1077546318813401
20.
Farshidianfar
,
A.
, and
Soltani
,
P.
,
2012
, “
Nonlinear Flow-Induced Vibration of a SWCNT With a Geometrical Imperfection
,”
Comput. Mater. Sci.
,
53
(
1
), pp.
105
116
.10.1016/j.commatsci.2011.08.014
21.
Sobamowo
,
G. M.
,
2016
, “
Nonlinear Vibration Analysis of Single-Walled Carbon Nanotube Conveying Fluid in Slip Boundary Conditions Using Variational Iterative Method
,”
J. Appl. Comput. Mech.
,
2
(
4
), pp.
208
221
.10.22055/jacm.2016.12527
22.
Sobamowo
,
M. G.
,
2017
, “
Nonlinear Thermal and Flow-Induced Vibration Analysis of Fluid-Conveying Carbon Nanotube Resting on Winkler and Pasternak Foundations
,”
Therm. Sci. Eng. Prog.
,
4
, pp.
133
149
.10.1016/j.tsep.2017.08.005
23.
Fernandes
,
R.
,
El-Borgi
,
S.
,
Mousavi
,
S. M.
,
Reddy
,
J. N.
, and
Mechmoum
,
A.
,
2017
, “
Nonlinear Size-Dependent Longitudinal Vibration of Carbon Nanotubes Embedded in an Elastic Medium
,”
Phys. E
,
88
, pp.
18
25
.10.1016/j.physe.2016.11.007
24.
Lim
,
C. W.
,
Zhang
,
G.
, and
Reddy
,
J. N.
,
2015
, “
A Higher-Order Nonlocal Elasticity and Strain Gradient Theory and Its Applications in Wave Propagation
,”
J. Mech. Phys. Solids
,
78
, pp.
298
313
.10.1016/j.jmps.2015.02.001
25.
Eringen
,
A. C.
,
1983
, “
On Differential Equations of Nonlocal Elasticity and Solutions of Screw Dislocation and Surface Waves
,”
J. Appl. Phys.
,
54
(
9
), pp.
4703
4710
.10.1063/1.332803
26.
Sinir
,
B. G.
,
2010
, “
Bifurcation and Chaos of Slightly Curved Pipes
,”
Math. Comput. Appl.
,
15
(
3
), pp.
490
502
.10.3390/mca15030490
27.
Owoseni
,
O. D.
,
Orolu
,
K. O.
, and
Oyediran
,
A. A.
,
2017
, “
Dynamics of Slightly Curved Pipe Conveying Hot Pressurized Fluid Resting on Linear and Nonlinear Viscoelastic Foundations
,”
ASME J. Vib. Acoust.
,
140
(
2
), p.
021005
.10.1115/1.4037703
28.
Ashley
,
H.
, and
Haviland
,
G.
,
1950
, “
Bending Vibration of a Pipe Line Containing Flowing Ffluid
,”
ASME J. Appl. Mech.
,
17
(
3
), pp.
229
232
.http://www.sciepub.com/reference/236250
You do not currently have access to this content.