Abstract

The flow inside the regenerative flow pump (RFP) is quite complex. This study investigated four pump models with various geometrical dimensions to explore the energy exchange characteristics. A computational fluids dynamics (CFD) simulation and the experiment were carried out. The results illustrate that the pressure growth mode in the impeller is consistent with the channels, which confirms the circulation flow existing in the pump. Furthermore, it is found that the circulation flow that features with longitudinal vortexes can be evaluated quantitatively by combining the analyses of the dimensionless axial distance, circulation number and entropy production. A smaller axial distance indicates that more flow is involved in the circulation and the intensity of the longitudinal vortex is enhanced; a large circulation number accompanied by a small dissipation loss could result in a satisfactory exchange flow. Therefore, the largest circulation number, least amount of dissipation, and shortest distance lead to the highest head and efficiency in the model with V-shaped blades and an increased impeller height. This work establishes a deeper understanding of the energy exchange mechanism and could serve as a reference for the geometrical design and performance reinforcement of RFP.

References

References
1.
Hollenberg
,
J. W.
, and
Potter
,
J. H.
,
1979
, “
An Investigation of Regenerative Blowers and Pumps
,”
ASME J. Eng. Ind.
,
101
(
2
), pp.
147
152
.10.1115/1.3439487
2.
Wilson
,
W. A.
,
Santalo
,
M. A.
, and
Oelrich
,
J.
,
1955
, “
A Theory of the Fluid-Dynamic Mechanism of Regenerative Pumps
,”
ASME J. Fluids Eng.
,
77
(
8
), pp.
1303
1316
.
3.
Song
,
J. W.
,
Engeda
,
A.
, and
Chung
,
M. K.
,
2003
, “
A Modified Theory for the Flow Mechanism in a Regenerative Flow Pump
,”
Proc. Inst. Mech. Eng., Part A: J. Power Energy
,
217
(
3
), pp.
311
321
.10.1243/095765003322066538
4.
Yoo
,
I. S.
,
Park
,
M. R.
, and
Chung
,
M. K.
,
2005
, “
Improved Momentum Exchange Theory for Incompressible Regenerative Turbomachines
,”
Proc. Inst. Mech. Eng., Part A: J. Power Energy
,
219
(
7
), pp.
567
581
.10.1243/095765005X31252
5.
Meakhail
,
T.
, and
Park
,
S. O.
,
2005
, “
An Improved Theory for Regenerative Pump Performance
,”
Proc. Inst. Mech. Eng., Part A: J. Power Energy
,
219
(
3
), pp.
213
222
.10.1243/095765005X7565
6.
Insinna
,
M.
,
Salvadori
,
S.
,
Martelli
,
F.
,
Peroni
,
G.
,
Simon
,
G.
,
Dipace
,
A.
, and
Squarcini
,
R.
,
2018
, “
One-Dimensional Prediction and Three-Dimensional CFD Simulation of the Fluid Dynamics of Regenerative Pumps
,”
ASME Paper No. GT2018-76416
.10.1115/GT2018-76416
7.
BÖhle
,
M.
, and
Müller
,
T.
,
2009
, “
Evaluation of the Flow Inside a Side Channel Pump by the Application of an Analytical Model and CFD
,”
ASME Paper No. FEDSM2009-78023
.10.1115/FEDSM2009-78023
8.
Fleder
,
A.
, and
BÖhle
,
M.
,
2015
, “
A Systematical Study of the Influence of Blade Length, Blade Width and Side Channel Height on the Performance of a Side Channel Pump
,”
ASME J. Fluids Eng.
,
137
(
12
), p.
121102
.10.1115/1.4030897
9.
Fleder
,
A.
, and
Böhle
,
M.
,
2019
, “
A Systematical Study of the Influence of Blade Number on the Performance of a Side Channel Pump
,”
ASME J. Fluids Eng.
,
141
(
11
), p.
111109
.10.1115/1.4043166
10.
Zhang
,
F.
,
Fleder
,
A.
,
BÖhle
,
M.
, and
Yuan
,
S. Q.
,
2016
, “
Effect of Suction Side Blade Profile on the Performance of a Side Channel Pump
,”
Proc. Inst. Mech. Eng., Part A: J. Power Energy
,
230
(
6
), pp.
586
597
.10.1177/0957650916649329
11.
Zhang
,
F.
,
Appiah
,
D.
,
Zhang
,
J. F.
,
Yuan
,
S. Q.
,
Osman
,
M. K.
, and
Chen
,
K.
,
2018
, “
Transient Flow Characterization in Energy Conversion of a Side Channel Pump Under Different Blade Suction Angles
,”
Energy
,
161
, pp.
635
648
.10.1016/j.energy.2018.07.152
12.
Appiah
,
D.
,
Zhang
,
F.
,
Yuan
,
S. Q.
, and
Osman
,
M. K.
,
2018
, “
Effects of the Geometrical Conditions on the Performance of a Side Channel Pump: A Review
,”
Int. J. Energy Res.
,
42
(
2
), pp.
416
428
.10.1002/er.3803
13.
Karanth
,
V. K.
,
Manjunath
,
M. S.
,
Kumar
,
S.
, and
Sharma
,
Y. N.
,
2015
, “
Numerical Study of a Self Priming Regenerative Pump for Improved Performance Using Geometric Modifications
,”
Int. J. Curr. Eng. Technol.
,
5
(
1
), pp.
104
109
.http://inpressco.com/numerical-study-of-a-self-priming-regenerative-pump-for-improved-performance-using-geometric-modifications/
14.
Choi
,
W. C.
,
Yoo
,
I. S.
,
Park
,
M. R.
, and
Chung
,
M. K.
,
2013
, “
Experimental Study on the Effect of Blade Angle on Regenerative Pump Performance
,”
Proc. Inst. Mech. Eng., Part A: J. Power Energy
,
227
(
5
), pp.
585
592
.10.1177/0957650913487731
15.
Wang
,
Y. F.
,
Zhang
,
F.
,
Yuan
,
S. Q.
,
Chen
,
K.
,
Wei
,
X. Y.
, and
Appiah
,
D.
,
2020
, “
Effect of URANS and Hybrid RANS-Large Eddy Simulation Turbulence Models on Unsteady Turbulent Flows Inside a Side Channel Pump
,”
ASME J. Fluids Eng.
,
142
(
6
), p.
061503
.10.1115/1.4045995
16.
Menter
,
F. R.
,
2009
, “
Review of the Shear-Stress Transport Turbulence Model Experience From an Industrial Perspective
,”
Int. J. Comput. Fluid Dyn.
,
23
(
4
), pp.
305
316
.10.1080/10618560902773387
17.
Surek
,
D.
,
1997
, “
Influence of Geometry Parameters on the Operating Behavior of Side Channel Pumps
,”
Forsch. Ing.
,
63
(
7–8
), pp.
235
253
.10.1007/PL00010756
18.
Grabow
,
G.
,
1993
, “
The Extended Cordier Diagram for Fluid Power and Internal Combustion Engines
,”
Freiberger Forschungshefte, A
, Vol.
830
,
Deutscher Verlag Für Grundstoffindustrie
,
Leipzig, Stuttgart, Germany
.
19.
Moffat
,
R. J.
,
1982
, “
Contributions to the Theory of Single-Sample Uncertainty Analysis
,”
ASME J. Fluids Eng.
,
104
(
2
), pp.
250
260
.10.1115/1.3241818
20.
Denton
,
J. D.
,
1993
, “
Loss Mechanisms in Turbomachines
,”
ASME Paper No. GT1993-435
.10.1115/93-GT-435
21.
Spurk
,
J. H.
, and
Aksel
,
N.
,
2008
,
Fluid Mechanics
,
Springer, Berlin
.
22.
BÖhle
,
M.
,
Fleder
,
A.
, and
Mohr
,
M.
,
2016
, “
Study of the Losses in Fluid Machinery With the Help of Entropy
,”
16th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery
,
Honolulu, HI
,
Paper No. 01879371
.https://hal.archives-ouvertes.fr/hal-01879371/document
23.
Kock
,
F.
, and
Herwig
,
H.
,
2005
, “
Entropy Production Calculation for Turbulent Shear Flows and Their Implementation in CFD Codes
,”
Int. J. Heat Fluid Flow
,
26
(
4
), pp.
672
680
.10.1016/j.ijheatfluidflow.2005.03.005
24.
Herwig
,
H.
, and
Kock
,
F.
,
2006
, “
Direct and Indirect Methods of Calculating Entropy Generation Rates in Turbulent Convective Heat Transfer Problems
,”
Heat Mass Transfer
,
43
(
3
), pp.
207
215
.10.1007/s00231-006-0086-x
25.
Zhang
,
F.
,
Appiah
,
D.
,
Hong
,
F.
,
Zhang
,
J. F.
,
Yuan
,
S. Q.
,
Adu-Poku
,
K. A.
, and
Wei
,
X., Y.
,
2020
, “
Energy Loss Evaluation in a Side Channel Pump Under Different Wrapping Angles Using Entropy Production Method
,”
Int. Commun. Heat Mass Transfer(0735-1933)
,
113
, p.
104526
.10.1016/j.icheatmasstransfer.2020.104526
You do not currently have access to this content.