A commercially available natural gas fueled gas turbine engine was operated on hydrogen. Three sets of fuel injectors were developed to facilitate stable operation while generating differing levels of fuel∕air premixing. One set was designed to produce near uniform mixing while the others have differing degrees of nonuniformity. The emission performance of the engine over its full range of loads is characterized for each of the injector sets. In addition, the performance is also assessed for the set with near uniform mixing as operated on natural gas. The results show that improved mixing and lower equivalence ratio decrease NO emission levels as expected. However, even with nearly perfect premixing, it is found that the engine, when operated on hydrogen, produces a higher amount of NO than when operated with natural gas. Much of this attributed to the higher equivalence ratios that the engine operates on when firing hydrogen. However, even the lowest equivalence ratios run at low power conditions, higher NO was observed. Analysis of the potential NO formation effects of residence time, kinetic pathways of NO production via NNH, and the kinetics of the dilute combustion strategy used are evaluated. While no one mechanism appears to explain the reasons for the higher NO, it is concluded that each may be contributing to the higher NO emissions observed with hydrogen. In the present configuration with the commercial control system operating normally, it is evident that system level effects are also contributing to the observed NO emission differences between hydrogen and natural gas.

1.
Lefebvre
,
A. H.
, 1999,
Gas Turbine Combustion
, 2nd ed.,
Taylor & Francis
,
Philadelphia, PA
.
2.
Effinger
,
M. W.
,
Mauzey
,
J. L.
, and
McDonell
,
V. G.
, 2005, “
Characterization and Reduction of Pollutant Emissions from a Landfill and Digester Gas Fired Microturbine Generator
,” ASME Paper No. GT2005–68520.
3.
Conrad
,
W. E.
, and
Corrington
,
L. C.
, 1957, “
NACA Research Memorandum: Hydrogen for Turbojet and Ramjet Powered Flight
,” Report No. NACA RM E57D23.
4.
Nomura
,
M.
,
Tamaki
,
H.
,
Morishita
,
T.
,
Ikeda
,
H.
, and
Hatori
,
K.
, 1981, “
Hydrogen Combustion Test in a Small Gas Turbine
,”
Int. J. Hydrogen Energy
0360-3199,
6
(
4
), pp.
397
412
.
5.
Sampath
,
P.
, and
Shum
,
F.
, 1985, “
Combustion Performance of Hydrogen in a Small Gas Turbine Combustor
,”
Int. J. Hydrogen Energy
0360-3199,
10
(
2
), pp.
829
837
.
6.
Chiesa
,
P.
,
Lozza
,
G.
, and
Mazzocchi
,
L.
, 2005, “
Using Hydrogen as Gas Turbine Fuel
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
127
, pp.
73
80
.
7.
Therkelsen
,
P. L.
,
Mauzey
,
J. L.
,
McDonell
,
V. G.
, and
Samuelsen
,
S.
, 2006, “
Evaluation of a Low Emission Gas Turbine Operated on Hydrogen
,” ASME Paper No. GT2006–90725.
8.
Phi
,
V. M.
,
Mauzey
,
J. L.
,
McDonell
,
V. G.
, and
Samuelsen
,
G. S.
, 2004, “
Fuel Injection and Emissions Characteristics of a Commercial Microturbine Generator
,” ASME Paper No. GT2004–54039.
9.
Reaction Design, 2006, CHEMKIN, Version 4.0.2.
11.
Konnov
,
A. A.
,
Dyakov
,
I. V.
, and
De Ruyck
,
J.
, 2002, “
Nitric Oxide Formation in Premixed Flames of H2+CO+CO2 and Air
,”
Proc. Combust. Inst.
1540-7489,
29
, pp.
2171
2177
.
12.
Mueller
,
M. A.
,
Kim
,
T. J.
,
Yetter
,
R. A.
, and
Dryer
,
F. L.
, 1999, “
Flow Reactor Studies and Kinetic Modeling of the H2∕O2 Reaction
,”
Int. J. Chem. Kinet.
0538-8066,
31
(
2
), pp.
113
125
.
13.
Reed
,
R. J.
, 1985,
North American Combustion Handbook
, Vol.
1
, 3rd ed.,
North American Mfg. Co.
,
Cleveland, OH
.
14.
Miller
,
J. A.
,
Branch
,
M. C.
, and
Kee
,
R. J.
, 1981, “
A Chemical Kinetic Model for the Selective Reduction of Nitric Oxide by Ammonia
,”
Combust. Flame
0010-2180,
43
, pp.
81
98
.
15.
Bozzelli
,
J. W.
, and
Dean
,
A. M.
, 1995, “
O+NNH: A Possible New Route for NOx Formation in Flames
,”
Int. J. Chem. Kinet.
0538-8066,
27
, pp.
1097
1109
.
16.
Konnov
,
A. A.
,
Colson
,
G.
, and
De Ruyck
,
J.
, 2001, “
NO Formation Rates for Hydrogen Combustion in Stirred Reactors
,”
Fuel
0016-2361,
80
, pp.
49
65
.
17.
Hayhurst
,
A. N.
, and
Hutchinson
,
E. M.
, 1998, “
Evidence for a New Way of Producing NO via NNH in Fuel-Rich Flames as Atmospheric Pressure
,”
Combust. Flame
0010-2180,
114
, pp.
274
279
.
18.
Baulch
,
D. L.
,
Cobos
,
C. J.
,
Cox
,
R. A.
,
Esser
,
C.
,
Frank
,
P.
,
Just
,
Th.
,
Kerr
,
J. A.
,
Pilling
,
M. J.
,
Troe
,
J.
,
Walker
,
R. W.
, and
Warnatz
,
J. J.
, 1992, “
Evaluated Kinetic Data for Combustion Modeling
,”
J. Phys. Chem. Ref. Data
0047-2689,
21
(
3
), pp.
411
734
.
19.
Michael
,
J. V.
, and
Lim
,
K. P.
, 1992, “
Rate Constants for the N2O Reaction System: Thermal Decomposition of N2O; N+NO→N2+O; and Implications for O+N2→NO+N
,”
J. Chem. Phys.
0021-9606,
97
(
5
), pp.
3228
8234
.
20.
Charlston-Goch
,
D.
,
Chadwick
,
B. L.
,
Morrison
,
R. J. S.
,
Campisi
,
A.
,
Thomesn
,
D. D.
, and
Laurendeau
,
N. M.
, 2001, “
Laser-Induced Fluorescence Measurements and Modeling of Nitric Oxide Premixed Flames of CO+H2+CH4 and Air at High Pressures
,”
Combust. Flame
0010-2180,
125
, pp.
729
743
.
21.
Hughes
,
K. J.
,
Tomlin
,
A. S.
,
Hampartsoumain
,
E.
,
Nimmo
,
W.
,
Zsely
,
I. G.
,
Ujvari
,
M.
,
Turanyi
,
T.
,
Glague
,
A. R.
, and
Pilling
,
M. J.
, 2001, “
An Investigation of Important Gas-Phase Reactions of Nitrogenous Species from the Simulation of Experimental Measurements in Combustion Systems
,”
Combust. Flame
0010-2180,
124
, pp.
573
589
.
22.
Mueller
,
M. A.
,
Yetter
,
R. A.
, and
Dryer
,
F. L.
, 2000, “
Kinetic Modeling of the CO∕H2O∕O2∕NO∕SO2 System: Implications for High-Pressure Fall-Off in the SO2+O(+M)=SO3(+M) Reaction
,”
Int. J. Chem. Kinet.
0538-8066,
32
(
6
), pp.
317
339
.
23.
Li
,
J.
,
Zhao
,
Z.
,
Kazakov
,
A.
, and
Dryer
,
F. L.
, 2004, “
An Updated Comprehensive Kinetic Model of Hydrogen Combustion
,”
Int. J. Chem. Kinet.
0538-8066,
36
(
10
), pp.
566
575
.
24.
Suzukawa
,
Y.
,
Sugiyama
,
S.
,
Hino
,
Y.
,
Ishioka
,
M.
, and
Mori
,
I.
, 1997, “
Heat Transfer Improvement and NOx Reduction by Highly Preheated Air Combustion
,”
Energy Convers. Manage.
0196-8904,
38
(
10–13
), pp.
1061
1071
.
25.
Hasegawa
,
T.
,
Tanaka
,
R.
, and
Niloka
,
T.
, 1997, “
High Temperature Air Combustion Contributing to Energy Saving and Pollutant Reduction in Industrial Furnace
,”
International Joint Power Generation Conference
, Vol.
1
, pp.
259
266
.
26.
Wünning
,
J. A.
, and
Wünning
,
J. G.
, 1997, “
Flameless Oxidation to Reduce Thermal NO-Formation
,”
Prog. Energy Combust. Sci.
0360-1285,
23
, pp.
81
94
.
27.
Kalb
,
J. R.
, and
Sattelmayer
,
T.
, 2004, “
Lean Blowout Limit and NOx Production of a Premixed Sub-ppm NOx Burner With Periodic Flue Gas Recirculation
,” ASME Paper No. GT2004–53410.
28.
Brückner-Kalb
,
J. R.
,
Hirsch
,
C.
, and
Sattelmayer
,
T.
, 2006, “
Operation Characteristics of a Premixed Sub-ppm NOx Burner With Periodical Recirculation of Combustion Products
,” ASME Paper No. GT2006–90072.
29.
Neumerier
,
Y.
,
Weksler
,
Y.
,
Zinn
,
B.
,
Seitzman
,
J.
,
Jagoda
,
J.
, and
Kenny
,
J.
, 2005, “
Ultra Low Emissions Combustor With Non-Premixed Reactants Injection
,” 41st AIAA∕ASME∕SAE∕ASEE Joint Propulsion Conference, Tuscon, AZ, Jul., Paper No. AIAA-2005–3775.
30.
Bobba
,
M. K.
,
Gopalakrishna
,
P.
,
Seitzman
,
J. M.
, and
Zinn
,
B. T.
, 2006, “
Characteristics of Combustion Processes in a Stagnation Point Reverse Flow Combustor
,” ASME Paper No. GT2006–91217.
31.
Choi
,
G.-M.
, and
Katsuki
,
M.
, 2002, “
Chemical Kinetic Study on the Reduction of Nitric Oxide in Highly Preheated Air Combustion
,”
Proc. Combust. Inst.
1540-7489,
29
, pp.
1165
1171
.
You do not currently have access to this content.