A computational method to evaluate fracture toughness of prospective erosion-resistant coatings using a combination of first-principles density functional theory (DFT) calculations and fracture mechanics is proposed. Elastic coefficients C11, C12, and C44, the ideal work of adhesion Wad, bulk modulus B, shear modulus G, and Young’s modulus E of transition metal nitrides with a cubic structure such as TiN, CrN, ZrN, VN, and HfN are calculated. Both the G/B ratio and Cauchy pressure C12C44 indicate brittle behavior for TiN, ZrN, and HfN and more metallic behavior for CrN and VN. The fracture toughness KIC and interfacial fracture toughness KICInt for bilayer combinations of these five nitrides is calculated along the [100] and [110] directions. The largest KIC value is obtained for HfN (2.14MPam1/2) in (100) orientation and for TiN (2.16MPam1/2) in (110) orientation. The lowest fracture toughness, in both orientations, is found for CrN. Among ten coherent interfaces of the five investigated nitrides the largest value of interfacial fracture toughness KICInt=3.24MPam1/2 is recorded for the HfN/TiN interface in the (110) orientation.

1.
Parameswaran
,
V. R.
,
Immarigeon
,
J. P.
, and
Nagy
,
D.
, 1992, “
Titanium Nitride Coating for Aero Engine Compressor Gas Path Components
,”
Surf. Coat. Technol.
0257-8972,
52
, pp.
251
260
.
2.
Paramesvaran
,
V. R.
,
Nagy
,
D.
,
Immarigeon
,
J. P.
,
Chow
,
D.
, and
Morphy
,
D.
, 1994, “
Erosion Resistant Coatings for Compressor Applications
,”
Advances in High Temperature Structural Materials and Protective Coatings
,
A. K.
Koul
,
V. R.
Paramesvaran
,
J. P.
Immarigeon
, and
W.
Wallace
, eds.,
National Research Council of Canada
,
Ottawa, Canada
.
3.
Tabakoff
,
W.
, 1999, “
Protection of Coated Superalloys From Erosion in Turbomachinery and Other Systems Exposed to Particulate Flows
,”
Wear
0043-1648,
233–235
, pp.
200
208
.
4.
Klein
,
M.
, and
Simpson
,
G.
, 2004, “
The Development of Innovative Methods for Testing a Russian Coating on GT T64 Gas Turbine Engine Compressor Blades
,”
ASME
Paper No. GT2004-54336.
5.
Bielawski
,
M.
, and
Beres
,
W.
, 2007, “
FE Modelling of Surface Stresses in Erosion-Resistant Coatings Under Single Particle Impact
,”
Wear
0043-1648,
262
, pp.
167
175
.
6.
Hassani
,
S.
,
Bielawski
,
M.
,
Beres
,
W.
,
Martinu
,
L.
,
Balazinski
,
M.
, and
Klemberg-Sapieha
,
J. E.
, 2008, “
Design of Hard Coating Architecture for the Optimization of Erosion Resistance
,”
Wear
0043-1648,
265
, pp.
879
887
.
7.
Ruff
,
A. W.
, and
Wiederhorn
,
S. M.
, 1979, “
Erosion by Solid Particle Impact
,”
Treatise on Materials Science and Technology: Vol. 16 Erosion
,
C. M.
Preece
,
Academic
,
New York
.
8.
Finnie
,
I.
, 1995, “
Some Reflections on the Past and Future of Erosion
,”
Wear
0043-1648,
186–187
, pp.
1
10
.
9.
Field
,
J. E.
, and
Hutchings
,
I. M.
, 1987, “
Surface Response to Impact
,”
Materials at High Strain Rates
,
T. Z.
Blazynski
, ed.,
Elsevier
,
New York
.
10.
Evans
,
A. G.
, 1979, “
Impact Damage Mechanics: Solid Projectiles
,”
Treatise on Materials Science and Technology: Vol. 16 Erosion
,
C. M.
Preece
,
Academic
,
New York
.
11.
Gachon
,
Y.
,
Ienny
,
P.
,
Forner
,
A.
,
Farges
,
G.
,
Sainte Catherine
,
M. C.
, and
Vannes
,
A. B.
, 1999, “
Erosion by Solid Particles of W/W–N Multilayer Coatings Obtained by PVD Process
,”
Surf. Coat. Technol.
0257-8972,
113
, pp.
140
148
.
12.
Yang
,
Q.
,
Seo
,
D. Y.
,
Zhao
,
L. R.
, and
Zeng
,
X. T.
, 2004, “
Erosion Resistance Performance of Magnetron Sputtering Deposited TiAlN Coatings
,”
Surf. Coat. Technol.
0257-8972,
188–189
, pp.
168
173
.
13.
Dudiy
,
S. V.
, and
Lundqvist
,
B. I.
, 2001, “
First-Principles Density-Functional Study of Metal-Carbonitride Interface Adhesion: Co/TiC(001) and Co/TiN(001)
,”
Phys. Rev. B
0556-2805,
64
, p.
045403
.
14.
Arya
,
A.
, and
Carter
,
E. A.
, 2003, “
Structure, Bonding, and Adhesion at the TiC(100)/Fe(110) Interface From First Principles
,”
J. Chem. Phys.
0021-9606,
118
, pp.
8982
8996
.
15.
Chen
,
K.
,
Zhao
,
L.
, and
Tse
,
J.
, 2003, “
Ab Initio Study of Elastic Properties of Ir and Ir3X Compounds
,”
J. Appl. Phys.
0021-8979,
93
, pp.
2414
2417
.
16.
Lazar
,
P.
,
Redinger
,
J.
, and
Podloucky
,
R.
, 2007, “
Density Functional Theory Applied to VN/TiN Multilayers
,”
Phys. Rev. B
0556-2805,
76
, p.
174112
.
17.
Wolf
,
W.
,
Podloucky
,
R.
,
Antretter
,
T.
, and
Fischer
,
F. D.
, 1999, “
First-Principles Study of Elastic and Thermal Properties of Refractory Carbides and Nitrides
,”
Philos. Mag. B
1364-2812,
79
, pp.
839
858
.
18.
Ravindran
,
P.
,
Fast
,
L.
,
Korzhavyi
,
P. A.
, and
Johansson
,
B.
, 1998, “
Density Functional Theory for Calculation of Elastic Properties of Orthorhombic Crystals: Application to TiSi2
,”
J. Appl. Phys.
0021-8979,
84
, pp.
4891
4904
.
19.
Chen
,
K.
,
Zhao
,
L.
,
Rodgers
,
J.
, and
Tse
,
J. S.
, 2003, “
Alloying Effects on Elastic Properties of TiN-Based Nitrides
,”
J. Phys. D
0022-3727,
36
, pp.
2725
2729
.
20.
Hu
,
Q. M.
, and
Yang
,
R.
, 2006, “
Mechanical Properties of Structural Materials From First-Principles
,”
Curr. Opin. Solid State Mater. Sci.
1359-0286,
10
, pp.
19
25
.
21.
Chen
,
K.
, and
Bielawski
,
M.
, 2008, “
Interfacial Fracture Toughness of Transition Metal Nitrides
,”
Surf. Coat. Technol.
0257-8972,
203
, pp.
598
601
.
22.
Ding
,
Z.
,
Zhou
,
S.
, and
Zhao
,
Y.
, 2004, “
Hardness and Fracture Toughness of Brittle Materials: A Density Functional Theory Study
,”
Phys. Rev. B
0556-2805,
70
, p.
184117
.
23.
Medvedeva
,
N. I.
, and
Freeman
,
A. J.
, 2008, “
Cleavage Fracture in Ti3SiC2 From First-Principles
,”
Scr. Mater.
1359-6462,
58
, pp.
671
674
.
24.
Chen
,
K.
, and
Bielawski
,
M.
, 2007, “
Ab Initio Study on Fracture Toughness of Ti0.75X0.25C Ceramics
,”
J. Mater. Sci.
0022-2461,
42
, pp.
9713
9716
.
25.
Aouadi
,
S. M.
, 2006, “
Structural and Mechanical Properties of TaZrN Films: Experimental and Ab Initio Studies
,”
J. Appl. Phys.
0021-8979,
99
, p.
053507
.
26.
Chen
,
K.
, and
Zhao
,
L.
, 2007, “
Elastic Properties, Thermal Expansion Coefficients and Electronic Structures of Ti0.75X0.25C Carbides
,”
J. Phys. Chem. Solids
0022-3697,
68
, pp.
1805
1811
.
27.
Parr
,
R. G.
, and
Yang
,
W.
, 1989,
Density Functional Theory of Atoms and Molecules
,
Oxford University Press
,
New York
.
28.
Kresse
,
G.
, and
Joubert
,
J.
, 1999, “
From Ultrasoft Pseudopotentials to The Projector Augmented-Wave Method
,”
Phys. Rev. B
0556-2805,
59
, pp.
1758
1775
.
29.
Perdew
,
J. P.
,
Chevary
,
J. A.
,
Vosko
,
S. H.
,
Jackson
,
K. A.
,
Pederson
,
M. R.
,
Singh
,
D. J.
, and
Fiolhais
,
C.
, 1992, “
Atoms, Molecules, Solids, and Surfaces: Applications of the Generalized Gradient Approximation for Exchange and Correlation
,”
Phys. Rev. B
0556-2805,
46
, pp.
6671
6687
.
30.
Nye
,
J. F.
, 1993,
Physical Properties of Crystals
,
Oxford University Press
,
Oxford
.
31.
Ohring
,
M.
, 1992,
The Materials Science of Thin Films
,
Academic
,
San Diego
.
32.
Boettger
,
J. C.
, 1994, “
Nonconvergence of Surface Energies Obtained From Thin-Film Calculations
,”
Phys. Rev. B
0556-2805,
49
, pp.
16798
16800
.
33.
Siegel
,
D. J.
,
Hector
,
L. G.
, Jr.
, and
Adams
,
J. B.
, 2002, “
First-Principle Study of Metal-Carbide/Nitride Adhesion: Al/VC vs. Al/VN
,”
Acta Mater.
1359-6454,
50
, pp.
619
631
.
34.
Warren
,
R.
, 1978, “
Measurement of the Fracture Properties of Brittle Solids by Hertzian Indentation
,”
Acta Metall.
0001-6160,
26
, pp.
1759
1769
.
35.
Maerky
,
C.
,
Guillou
,
M. -O.
,
Henshall
,
J. L.
, and
Hooper
,
R. M.
, 1996, “
Indentation Hardness and Fracture Toughness in Single Crystal TiC0.96
,”
Mater. Sci. Eng., A
0921-5093,
209
, pp.
329
336
.
36.
Ahuja
,
R.
,
Eriksson
,
O.
,
Wills
,
J. M.
, and
Johansson
,
B.
, 1996, “
Structural, Elastic, and High-Pressure Properties of Cubic TiC, TiN, and TiO
,”
Phys. Rev. B
0556-2805,
53
, pp.
3072
3079
.
37.
Choy
,
M. M.
,
Cook
,
W. R.
,
Hearmon
,
R. F. S.
,
Jaffe
,
H.
,
Jerphagnon
,
J.
,
Kurtz
,
S. K.
,
Liu
,
S. T.
, and
Nelson
,
D. F.
, 1979, “
Elastic, Piezoelectric, Pyroelectric, Piezooptic, Electrooptic Constants, and Nonlinear Dielectric Susceptibilities of Crystals
,”
Landolt–Bornstein: Numerical Data and Functional Relationships in Science and Technology
, Vol.
11
,
K. -H.
Hellwege
and
A. M.
Hellwege
, eds.,
Springer-Verlag
,
Berlin
.
38.
Haines
,
J.
,
Leger
,
J. M.
, and
Bocquillon
,
G.
, 2001, “
Synthesis and Design of Superhard Materials
,”
Annu. Rev. Mater. Res.
1531-7331,
31
, pp.
1
23
.
39.
Pearson
,
W. B.
, 1967,
A Handbook of Lattice Spacings and Structures of Metals and Alloys
,
Pergamon
,
Oxford
.
40.
Kim
,
J. O.
,
Achenbach
,
J. D.
,
Mirkarimi
,
P. B.
,
Shinn
,
M.
, and
Barnett
,
S. A.
, 1992, “
Elastic Constants of Single-Crystal Transition-Metal Nitride Films Measured by Line-Focus Acoustic Microscopy
,”
J. Appl. Phys.
0021-8979,
72
, pp.
1805
1811
.
41.
Pugh
,
S. F.
, 1953, “
Relations Between the Elastic Moduli and Plastic Properties of Polycrystalline Pure Metals
,”
Philos. Mag.
1478-6435,
45
, pp.
823
843
.
42.
Chen
,
K.
,
Zhao
,
L.
, and
Tse
,
J. S.
, 2004, “
Elastic Properties of Platinum Rh and Rh3X Compounds
,”
Phys. Lett. A
0375-9601,
331
, pp.
400
403
.
43.
Pettifor
,
D. G.
, 1992, “
Theoretical Predictions of Structure and Related Properties of Intermetallics
,”
Mater. Sci. Technol.
0267-0836,
8
, pp.
345
349
.
44.
Karimi
,
A.
,
Wang
,
Y.
,
Cselle
,
T.
, and
Morstein
,
M.
, 2002, “
Fracture Mechanisms in Nanoscale Layered Hard Thin Films
,”
Thin Solid Films
0040-6090,
420–421
, pp.
275
280
.
You do not currently have access to this content.