Grid convergence in finite element analysis (FEA), despite a wide variety of tools available to date, remains an elusive and challenging task. Due to the complex and time-consuming process of remeshing and solving the finite element model (FEM), convergence studies can be a part of the most arduous portion of the modeling process and can even be impossible with FEMs unassociated with CAD. Existing a posteriori methods, such as relative error in the energy norm, provide a near arbitrary indication of the model convergence for eigenfrequencies. This paper proposes a new approach to evaluate the harmonic convergence of an existing model without conducting a convergence study. Strain energy superconvergence (SES) takes advantage of superconvergence points within a FEM and accurately recovers the strain energy within the model using polyharmonic splines, thus providing a more accurate estimate of the system's eigenfrequencies without modification of the FEM. Accurate eigenfrequencies are critical for designing for airfoil resonance avoidance and mistuned rotor response prediction. Traditional error estimation strategies fail to capture harmonic convergence as effectively as SES, potentially leading to a less accurate airfoil resonance and rotor mistuning prediction.

References

1.
Bathe
,
K.-J.
,
1996
,
Finite Element Procedures
,
Prentice-Hall
, Upper Saddle River, NJ.
2.
Heath
,
S.
,
Slater
,
T.
,
Mansfield
,
L.
, and
Loftus
,
P.
,
1997
, “
Turbomachinery Blade Tip Measurement Techniques
,”
90th Symposium on Advanced Non-Intrusive Instrumentation for Propulsion Engines
, Propulsion and Energetics Panel (PEP), Brussels, Belgium, Oct. 20–24, AGARD 598, p. 32.
3.
Chan
,
Y. J.
,
2009
, “
Variability of Blade Vibration in Mistuned Bladed Disks
,” Ph.D. thesis, University of London, London.
4.
Roy
,
C. J.
,
2010
, “
Review of Discretization Error Estimators in Scientific Computing
,”
AIAA
Paper No. 2010-126.
5.
Walz
,
J. E.
,
Fulton
,
R. E.
, and
Cyrus
,
N. J.
,
1968
, “
Accuracy and Convergence of Finite Element Approximations
,”
2nd Conference on Matrix Methods in Structural Mechanics
, Air Force Flight Dynamics Laboratory, Wright-Patterson AFB, OH, Oct. 15–17, Report No. ADA447390.
6.
Schmidt
,
H.
,
Alber
,
T.
,
Wehner
,
T.
,
Blakytny
,
R.
, and
Wilke
,
H.
,
2009
, “
Discretization Error When Using Finite Element Models: Analysis and Evaluation of an Underestimated Problem
,”
J. Biomech.
,
42
(
12
), pp.
1926
1934
.
7.
Baušys
,
R.
,
1995
, “
Accuracy Estimates in Free Vibration Analysis
,”
Statyba
,
1
(
4
), pp.
5
19
.
8.
Ainsworth
,
M.
, and
Oden
,
J. T.
,
1997
, “
A Posteriori Error Estimation in Finite Element Analysis
,”
Comput. Methods Appl. Mech. Eng.
,
142
(
12
), pp.
1
88
.
9.
Oh
,
H.-S.
, and
Batra
,
R.
,
1999
, “
Application of Zienkiewiczzhu's Error Estimate With Superconvergent Patch Recovery to Hierarchical p-Refinement
,”
Finite Elem. Anal. Des.
,
31
(
4
), pp.
273
280
.
10.
Craig
,
A.
,
Ainsworth
,
M.
,
Zhu
,
J.
, and
Zienkiewicz
,
O.
,
1989
, “
h and h-p Version Error Estimation and Adaptive Procedures From Theory to Practice
,”
Eng. Comput.
,
5
(
3–4
), pp.
221
234
.
11.
Barlow
,
J.
,
1976
, “
Optimal Stress Locations in Finite Element Models
,”
Int. J. Numer. Methods Eng.
,
10
(
2
), pp.
243
251
.
12.
Zienkiewicz
,
O.
,
Gago
,
J. D. S.
, and
Kelly
,
D.
,
1983
, “
The Hierarchical Concept in Finite Element Analysis
,”
Comput. Struct.
,
16
(
14
), pp.
53
65
.
13.
Voltera
,
E.
, and
Zachmanoglou
,
E. C.
,
1965
,
Dynamics of Vibrations
,
Charles E. Merrill Books
, Columbus, OH.
14.
Yue
,
Z.
, and
Robbins
,
D.
,
2003
, “
Rank Deficiency in Superconvergent Patch Recovery Techniques With 4-Node Quadrilateral Elements
,”
Commun. Numer. Methods Eng.
,
23
(
1
), pp.
1
10
.
15.
Li
,
B.
, and
Zhang
,
Z.
,
1999
, “
Analysis of a Class of Superconvergence Patch Recovery Techniques for Linear and Bilinear Finite Elements
,”
Numer. Methods Partial Differ. Equations
,
15
(
2
), pp.
151
167
.
16.
Rdenas
,
J. J.
,
Tur
,
M.
,
Fuenmayor
,
F. J.
, and
Vercher
,
A.
,
2007
, “
Improvement of the Superconvergent Patch Recovery Technique by the Use of Constraint Equations: The SPR-C Technique
,”
Int. J. Numer. Methods Eng.
,
70
(
6
), pp.
705
727
.
17.
Gu
,
H.
,
Zong
,
Z.
, and
Hung
,
K. C.
,
2004
, “
A Modified Superconvergent Patch Recovery Method and Its Application to Large Deformation Problems
,”
Finite Elem. Anal. Des.
,
40
(
5–6
), pp.
665
687
.
18.
Beatson
,
R.
,
Powell
,
M. J. D.
, and
Tan
,
A. M.
,
2006
, “
Fast Evaluation of Polyharmonic Splines in Three Dimensions
,”
IMA J. Numer. Anal.
,
27
(
3
), pp.
427
450
.
19.
MacQueen
,
J.
,
1967
, “Some Methods for Classification and Analysis of Multivariate Observations,”
Fifth Berkeley Symposium on Mathematical Statistics and Probability
, Berekely, CA, June 21–July 18, Vol. 1, pp. 281–297.
20.
Castanier
,
M. P.
, and
Pierre
,
C.
,
2002
, “
Using Intentional Mistuning in the Design of Turbomachinery Rotors
,”
AIAA J.
,
40
(
10
), pp.
2077
2086
.
21.
Petrov
,
E. P.
, and
Ewins
,
D. J.
,
2003
, “
Analysis of the Worst Mistuning Patterns in Bladed Disk Assemblies
,”
ASME J. Turbomach.
,
125
(
4
), pp.
623
631
.
You do not currently have access to this content.