This paper presents results from an extensive experimental study on the rubbing behavior of labyrinth seal fins (SFs) and a honeycomb liner. The objective of the present work is to improve the understanding of the rub behavior of labyrinth seals by quantifying the effects and interactions of sliding speed, incursion rate, seal geometry, and SF rub position on the honeycomb liner. In order to reduce the complexity of the friction system studied, this work focuses on the contact between a single SF and a single metal foil. The metal foil is positioned in parallel to the SF to represent contact between the SF and the honeycomb double foil section. A special test rig was set up enabling the radial incursion of a metal foil into a rotating labyrinth SF at a defined incursion rate of up to 0.65 mm/s and friction velocities up to 165 m/s. Contact forces, friction temperatures, and wear were measured during or after the rub event. In total, 88 rub tests including several repetitions of each rub scenario have been conducted to obtain a solid data base. The results show that rub forces are mainly a function of the rub parameters incursion rate and friction velocity. Overall, the results demonstrate a strong interaction between contact forces, friction temperature, and wear behavior of the rub system. The presented tests confirm basic qualitative observations regarding blade rubbing provided in literature.

References

1.
Steinetz
,
B. M.
,
Hendricks
,
R. C.
, and
Munson
,
J.
,
1998
, “
Advanced Seal Technology Role in Meeting Next Generation Turbine Engine Goals
,” AVT-PPS Paper No. 11.
2.
Chupp
,
R.
,
Hendricks
,
R.
,
Lattime
,
S.
, and
Steinetz
,
B.
,
2006
, “
Sealing in Turbomachinery
,”
J. Propul. Power
,
22
(
2
), pp.
313
349
.
3.
Denecke
,
J.
,
Färber
,
J.
,
Dullenkopf
,
K.
, and
Bauer
,
H.-J.
,
2008
, “
Interdependence of Discharge Behavior, Swirl Development and Total Temperature Increase in Rotating Labyrinth Seals
,”
ASME
Paper No. GT2008-51429.
4.
Lattime
,
S.
, and
Steinetz
,
B.
,
2002
, “
Turbine Engine Clearance Control Systems: Current Practices and Future Directions
,” National Aeronautics and Space Administration, Glenn Research Center, Report No. NASA/TM-2002-211794.
5.
Rossmann
,
A.
,
2000
,
Die Sicherheit von Turbo-Flugtriebwerken
, Band 2;
Turbo Consult
, Karlsfeld.
6.
Pychynski
,
T.
,
Dullenkopf
,
K.
, and
Bauer
,
H.-J.
,
2013
, “
Theoretical Study on the Origin of Radial Cracks in the Fins of Labyrinth Seals
,”
ASME
Paper No. GT2013-94834.
7.
Dorfman
,
M.
,
Erning
,
U.
, and
Mallon
,
J.
,
2002
, “
Gas Turbines Use Abradable Coatings for Clearance-Control Seals
,”
Sealing Technol.
,
2002
(
1
), pp.
7
–8
8.
Sporer
,
D.
, and
Fortuna
,
D.
,
2012
, “
Braze Materials for Brazing Seal Honeycomb: Trends, Challenges and a Market Outlook
,”
Brazing and Soldering (2012), IBSC 5th International Conference
, Las Vegas, NV, Apr. 22–25,
ASM International
, pp.
51
58
.
9.
Smarsly
,
W.
,
Zheng
,
N.
,
Vivo
,
E.
,
Tuffs
,
M.
,
Schreiber
,
K.
,
Defer
,
B.
,
Langlade-Bomba
,
C.
,
Anderson
,
O.
,
Goehler
,
H.
,
Simms
,
N.
, and
McColvin
,
G.
,
2005
, “
Advanced High Temperature Turbine Seals Materials and Designs
,”
Mater. Sci. Forum
,
492–493
, pp.
21
26
.
10.
Sporer
,
D.
, and
Shiembob
,
L.
,
2004
, “
Alloy Selection for Gas Path Seal Systems
,”
ASME
Paper No. GT2004-53115.
11.
Jacquet-Richardet
,
G.
,
Torkhani
,
M.
,
Cartraud
,
P.
,
Thouverez
,
F.
,
Baranger
,
T. N.
,
Herran
,
M.
,
Gibert
,
C.
,
Baguet
,
S.
,
Almeida
,
P.
, and
Peletan
,
L.
,
2013
, “
Rotor to Stator Contacts in Turbomachines—Review and Application
,”
Mech. Syst. Signal Process.
,
40
(
2
), pp.
401
420
.
12.
Laverty
,
W. F.
,
1982
, “
Rub Energetics of Compressor Blade Tip Seals
,”
Wear
,
75
(
1
), pp.
1
20
.
13.
Emery
,
A. F.
,
Wolak
,
J.
,
Etemad
,
S.
, and
Choi
,
S. R.
, “
An Experimental Investigation of Temperatures Due to Rubbing at the Blade-Seal Interface in an Aircraft Compressor
,”
Wear
,
91
(
2
), pp.
117
130
.
14.
Wang
,
H.
,
1996
, “
Criteria for Analysis of Abradable Coatings
,”
Surf. Coat. Technol.
,
79
(
1–3
), pp.
71
75
.
15.
Chappel
,
D.
,
Vo
,
L.
, and
Howe
,
H.
,
2001
, “
Gas Path Blade Tip Seals: Abradable Seal Material Testing at Utility Gas and Steam Turbine Operating Conditions
,”
ASME
Paper No. GT2001-0583.
16.
Taylor
,
T. A.
,
Thompson
,
B. W.
, and
Aton
,
W.
,
2007
, “
High-Speed Rub Wear Mechanism in IN-718 vs. NiCrAl-Bentonite
,”
Surf. Coat. Technol.
,
2002
(
4–7
), pp.
698
703
.
17.
Padova
,
C.
,
Dunn
,
M.
,
Barton
,
J.
,
Turner
,
K.
,
Turner
,
A.
, and
DiTommaso
,
D.
,
2011
, “
Casing Treatment and Blade-Tip Configuration Effects on Controlled Gas Turbine Blade Tip/Shroud Rubs at Engine Conditions
,”
ASME J. Turbomach.
,
133
(1), pp.
713
723
.
18.
Padova
,
C.
,
Dunn
,
M.
,
Barton
,
J.
,
Turner
,
K.
, and
Steen
,
T.
,
2011
, “
Controlled Fan Blade Tip/Shroud Rubs at Engine Conditions
,”
ASME
Paper No. GT2011-45223.
19.
Sutter
,
G.
, and
Ranc
,
N.
,
2010
, “
Flash Temperature Measurement During Dry Friction Process at High Sliding Speed
,”
Wear
,
268
(
11–12
), pp.
1237
1242
.
20.
Cuny
,
M.
,
Philippon
,
S.
,
Chevrier
,
P.
, and
Garcin
,
F.
,
2014
, “
Experimental Measurement of Dynamic Forces Generated During Short-Duration Contacts: Application to Blade-Casing Interactions in Aircraft Engines
,”
Exp. Mech.
,
54
(
2
), pp.
101
114
.
21.
Stringer
,
J.
, and
Marshall
,
M. B.
,
2012
, “
High Speed Wear Testing of an Abradable Coating
,”
J. Wear
,
294–295
, pp.
257
263
.
22.
Mandard
,
R.
,
Witz
,
J. F.
,
Boidin
,
X.
,
Fabis
,
J.
,
Desplanques
,
Y.
, and
Meriaux
,
J.
,
2014
, “
Interacting Force Estimation During Blade/Seal Rubs
,”
Tribol. Int.
,
82
, pp.
504
513
.
23.
Legrand
,
M.
, and
Pierre
,
C.
,
2009
, “
Numerical Investigation of Abradable Coating Wear Through Plastic Constitutive Law: Application to Aircraft Engines
,”
ASME
Paper No. DETC2009-87669.
24.
Williams
,
R. J.
,
2011
, “
Simulation of Blade Casing Interaction Phenomena in Gas Turbines Resulting From Heavy Tip Rubs Using an Implicit Time Marching Method
,”
ASME
Paper No. GT2011-45495.
25.
Millecamps
,
A.
,
Brunel
,
J. F.
,
Dufrénoy
,
P.
,
Garcin
,
F.
, and
Nucci
,
M.
,
2010
, “
Influence of Thermal Effects During Blade-Casing Contact Experiments
,”
ASME
Paper No. DETC2009-86842.
26.
Batailly
,
A.
,
Legrand
,
M.
, and
Pierre
,
C.
,
2011
, “
Influence of Abradable Coating Wear Mechanical Properties on Rotor Stator Interaction
,”
ASME
Paper No. GT2011-45189.
27.
Batailly
,
A.
,
Cuny
,
M.
,
Legrand
,
M.
, and
Philippon
,
S.
,
2013
, “
Numerical-Experimental Confrontation in the Simulation of Tool/Abradable Material Interaction
,”
ASME J. Eng. Gas Turbines Power
,
135
(
6
), p.
062102
.
28.
Faraoun
,
H. I.
,
Seichepine
,
J. L.
,
Coddet
,
C.
,
Aourag
,
H.
,
Zwick
,
J.
,
Hopkins
,
N.
,
Hopkins
,
N.
,
Sporer
,
D.
, and
Hertter
,
M.
,
2006
, “
Modelling Route for Abradable Coatings
,”
Surf. Coat. Technol.
,
200
(
22–23
), pp.
6578
6582
.
29.
Seichepine
,
J. L.
,
Faraoun
,
H. I.
,
Peyraut
,
F.
,
Chandler
,
P.
,
Coddet
,
C.
,
Sporer
,
D.
,
Hertter
,
M.
, and
Sellars
,
C.
,
2008
, “
Numerical Simulation of the Thermo-Mechanical Behaviour of Thermally Sprayed Abradable Coatings
,” http://www.mtu.de/en/technologies/engineering_news/production/Hertter_Numerical_simulation.pdf
30.
Peyraut
,
F.
,
Seichepine
,
J. L.
,
Coddet
,
C.
, and
Hertter
,
M.
,
2008
, “
Finite-Element Modeling of Abradable Materials–Identification of Plastic Parameters and Issues on Minimum Hardness Against Coating’s Thickness
,”
Int. J. Simul. Multidiscip. Des. Optim.
,
2
(
3
), pp.
209
215
.
31.
Borel
,
M. A.
,
Nicoll
,
A. R.
,
Schläpfer
,
H. W.
, and
Schmid
,
R. K.
,
1989
, “
The Wear Mechanisms Occurring in Abradable Seals in Gas Turbines
,”
Surf. Coat. Technol.
,
39–40
(Pt 1), pp.
117
128
.
32.
Marscher
,
W. D.
,
1980
, “
A Phenomenological Model of Abradable Wear in High Performance Turbomachinery
,”
Wear
,
59
(
1
), pp.
191
211
.
33.
Rathmann
,
U.
,
Olmes
,
S.
, and
Simeon
,
A.
,
2007
, “
Sealing Technology–Rub Test Rig for Abrasive/Abrable Systems
,”
ASME
Paper No. GT2007-27724.
34.
Delebarre
,
V.
,
Wagner
,
D.
,
Paris
,
J. Y.
,
Dessein
,
G.
,
Denape
,
J.
, and
Gurt-Santanach
,
J.
,
2014
, “
An Experimental Study of the High-Speed Interaction Between a Labyrinth Seal and an Abradable Coating in a Turbine-Engine Application
,”
Wear
,
316
(
1
), pp.
109
118
.
35.
Bill
,
R. C.
, and
Ludwig
,
L.
,
1980
, “
Wear of Seal Materials Used in Aircraft Propulsion Systems
,”
Wear
,
59
(
1
), pp.
165
189
.
36.
Marscher
,
W. D.
,
1982
, “
Thermal versus Mechanical Effects in High Speed Sliding
,”
Wear
,
79
(
1
), pp.
129
143
.
37.
Chupp
,
R.
,
Lau
,
Y. C.
,
Ghasripoor
,
F.
,
Baldwin
,
D.
,
Ng
,
C.
,
McGovern
,
T.
, and
Berkeley
,
D.
,
2004
, “
Development of Higher Temperature Abradable Seals for Gas Turbine Applications
,”
ASME
Paper No. GT2004-53029.
38.
Gardner
,
L.
,
Insausti
,
A.
,
Ng
,
L. T.
, and
Ashraf
,
M.
,
2010
, “
Elevated Temperature Material Properties of Stainless Steel Alloys
,”
J. Constr. Steel Res.
,
66
(
5
), pp.
634
647
.
39.
Ochs
,
M.
,
Schulz
,
A.
, and
Bauer
,
H. J.
,
2010
, “
High Dynamic Range Infrared Thermography by Pixelwise Radiometric Self-Calibration
,”
Infrared Phys. Technol.
,
53
(
2
), pp.
112
119
.
40.
Herrmann
,
N.
,
Dullenkopf
,
K.
, and
Bauer
,
H.-J.
,
2013
, “
Flexible Seal Strip Design for Advanced Labyrinth Seals in Turbines
,”
ASME
Paper No. GT2013-95424.
41.
Ghasripoor
,
F.
,
Turnquist
,
N. A.
,
Kowalczyk
,
M.
, and
Couture
,
B.
,
2004
, “
Wear Prediction of Strip Seals Through Conductance
,”
ASME
Paper No. GT2004-53297.
42.
Komanduri
,
R.
, and
Hou
,
Z. B.
,
2001
, “
Analysis of Heat Partition and Temperature Distribution in Sliding Systems
,”
Wear
,
251
(
1–12
), pp.
925
938
.
43.
Bansal
,
D.
, and
Streator
,
J.
,
2009
, “
A Method for Obtaining the Temperature Distribution at the Interface of Sliding Bodies
,”
Wear
,
266
(
7–8
), pp.
721
732
.
44.
Archard
,
J. F.
, and
Hirst
,
W.
,
1956
, “
The Wear of Metals Under Unlubricated Conditions
,”
Proc. R. Soc. London, Ser. A
,
236
(
1206
), pp.
397
410
.
You do not currently have access to this content.