Oil whip is a self-excited subsynchronous vibration which limits the range of operating speed of journal bearings (JBs). JBs have wide range of applications due to their high loading capacity, simple geometry, and lubrication. When the speed of rotation increases, the oil whip instability is excited with a frequency corresponding to the rotor critical speed which causes excessive undesirable vibration. A solution for this instability is implemented through this paper. The control action is implemented through a new integrated bearing device. The bearing consists of JB and electromagnetic actuator (EMA). The oil whip control action is applied through the EMA. A fuzzy logic control algorithm is developed and experimentally applied to a rotor test rig. The controller is suitable to deal with the problems of uncertainties and nonlinearity. The experimental results show the ability of the developed controller to eliminate the oil whip instability when applied to a test rig which simulates industrial rotor through an integrated bearing prototype which was designed and manufactured.

References

1.
El-Shafei
,
A.
,
2010
, “
Methods of Controlling the Instability in Fluid Film Bearings
,” U.S. Patent No. 7,836,601.
2.
El-Shafei
,
A.
, and
Dimitri
,
A. S.
,
2010
, “
Controlling Journal Bearing Instability Using Active Magnetic Bearing
,”
ASME J. Eng. Gas Turbines Power
,
132
(
1
), p.
012502
.
3.
Dimitri
,
A. S.
, and
El-Shafei
,
A.
,
2010
, “
Instability Control and Unbalance Compensation of Flexible Rotors Supported on Journal Bearings Using Magnetic Bearings
,”
8th IFToMM International Conference on Rotordynamics
, KIST, Seoul, Sept. 12–15.
4.
El-Hakim
,
M.
,
Dimitri
,
A. S.
,
Sakr
,
T.
,
Mahfoud
,
J.
,
Adly
,
A. A.
, and
El-Shafei
,
A.
,
2012
, “
Numerical and Experimental Identification of a Combined Journal-Magnetic Bearing: Smart Integrated Bearing
,”
10th International Conference on Vibrations in Rotating Machinery
, IMechE, London, Sept. 11–13, pp.
399
407
.
5.
Newkirk
,
B. L.
, and
Taylor
,
H. D.
,
1925
, “
Shaft Whipping Due to Oil Action in Journal Bearings
,”
Gen. Electr. Rev.
,
28
, pp.
559
568
.
6.
Potrisky
,
H.
,
1953
, “
Contribution of the Theory of Oil Whip
,”
Trans. ASME
,
75
, pp.
1153
1161
.
7.
Pinkus
,
O.
,
1956
, “
Experimental Investigation of Resonant Whip
,”
Trans. ASME
,
78
, pp.
975
983
.
8.
Muszynska
,
A.
,
1986
, “
Whirl and Whip-Rotor/Bearing Stability Problems
,”
J. Sound Vib.
,
110
(
3
), pp.
443
462
.
9.
Guo
,
Z.
, and
Kirk
,
R. G.
,
2003
, “
Instability Boundary for Rotor-Hydrodynamic Bearing Systems Part 2: Rotor With External Flexible Damped Support
,”
ASME J. Vib. Acoust.
,
125
(
4
), pp.
423
426
.
10.
El-Shafei
,
A.
,
Tawfick
,
S. H.
,
Raafat
,
M. S.
, and
Aziz
,
G. M.
,
2007
, “
Some Experiments on Oil Whirl and Oil Whip
,”
ASME J. Eng. Gas Turbines Power
,
129
(
1
), pp.
144
153
.
11.
de Castro
,
H. F.
,
Cavalca
,
K. L.
, and
Nordmann
,
R.
,
2008
, “
Whirl and Whip Instabilities in Rotor-Bearing System Considering a Nonlinear Force Model
,”
J. Sound Vib.
,
317
(
1–2
), pp.
273
293
.
12.
Sahinkaya
,
M. N.
, and
Burrows
,
C. R.
,
1985
, “
Control of Stability and the Synchronous Vibration of a Flexible Rotor Supported on Oil-Film Bearings
,”
ASME J. Dyn. Syst., Meas. Control
,
107
(
2
), pp.
139
144
.
13.
Burrows
,
C. R.
,
Sahinkaya
,
M. N.
, and
Clements
,
S.
,
1989
, “
Active Vibration Control of Flexible Rotors: An Experimental and Theoretical Study
,”
Proc. R. Soc. London, Ser. A
,
422
(
1862
), pp.
123
146
.
14.
Mahfoud
,
J.
, and
der Hagopian
,
J.
,
2012
, “
Investigations on Critical Speed Suppressing by Using Electromagnetic Actuators
,”
Smart Struct. Syst.
,
9
(
4
), pp.
303
311
.
15.
Fan
,
C.-C.
, and
Pan
,
M.-C.
,
2011
, “
Experimental Study on the Whip Elimination of Rotor-Bearing Systems With Electromagnetic Exciters
,”
Mech. Mach. Theory
,
46
(
3
), pp.
290
304
.
16.
Fan
,
C.-C.
, and
Pan
,
M.-C.
,
2011
, “
Active Elimination of Oil and Dry Whips in a Rotating Machine With an Electromagnetic Actuator
,”
Int. J. Mech. Sci.
,
53
(
2
), pp.
126
134
.
17.
Riemann
,
B.
,
Perini
,
E. A.
,
Cavalca
,
K. L.
,
Castro
,
H. F.
, and
Rinderknecht
,
S.
,
2013
, “
Oil Whip Instability Control Using μ-Synthesis Technique on a Magnetic Actuator
,”
J. Sound Vib.
,
332
(
4
), pp.
654
673
.
18.
Cole
,
M. O. T.
,
Chamroon
,
C.
, and
Ngamprapasom
,
P.
,
2012
, “
Force Feedback Control for Active Stabilization of Synchronous Whirl Orbits in Rotor Systems With Nonlinear Stiffness Elements
,”
ASME J. Vib. Acoust.
,
134
(
2
), p.
021018
.
19.
Zadeh
,
L. A.
,
1965
, “
Fuzzy Sets
,”
Inf. Control
,
8
(
3
), pp.
338
353
.
20.
Defoy
,
B.
,
Alban
,
T.
, and
Mahfoud
,
J.
,
2014
, “
Experimental Assessment of a New Fuzzy Controller Applied to a Flexible Rotor Supported by Active Magnetic Bearings
,”
ASME J. Vib. Acoust.
,
136
(
5
), p.
051006
.
21.
Xiao
,
W.
, and
Weidemann
,
B.
,
1995
, “
Fuzzy Modelling and Its Application to Magnetic Bearing Systems
,”
Fuzzy Sets Syst.
,
73
(
2
), pp.
201
217
.
22.
Fuh
,
C.-C.
, and
Tung
,
P.-C.
,
1997
, “
Robust Stability Analysis of Fuzzy Control Systems
,”
Fuzzy Sets Syst.
,
88
(
3
), pp.
289
298
.
23.
Golob
,
M.
, and
Tovornik
,
B.
,
2003
, “
Modeling and Control of the Magnetic Suspension System
,”
ISA Trans.
,
42
(
1
), pp.
89
100
.
24.
Minihana
,
T. P.
,
Leia
,
S.
,
Suna
,
G.
,
Palazzoloa
,
A.
,
Kascakb
,
A. F.
, and
Calvertc
,
T.
,
2003
, “
Large Motion Tracking Control for Thrust Magnetic Bearings With Fuzzy Logic, Sliding Mode, and Direct Linearization
,”
J. Sound Vib.
,
263
(
3
), pp.
549
567
.
25.
El-Shafei
,
A.
,
Dimitri
,
A. S.
,
Saqr
,
T.
, and
El-Hakim
,
M.
,
2014
, “
Test Rig Characterization and Dynamic Testing of a Smart Electro-Magnetic Actuator Journal Integrated Bearing
,”
9th IFToMM International Conference on Rotordynamics
, Milan, Sept. 22–25, pp.
1145
1156
.
26.
El-Shafei
,
A.
,
1994
, “
Insights Into the Static and Dynamic Characteristics of Journal Bearings
,”
4th IFToMM International Conference on Rotordynamics
, Chicago, Sept. 7–9, pp.
307
315
.
27.
der Hagopian
,
J.
, and
Mahfoud
,
J.
,
2010
, “
Electromagnetic Actuator Design for the Control of Light Structures
,”
Smart Struct. Syst.
,
6
(
1
), pp.
29
38
.
You do not currently have access to this content.