Since its introduction in 2003, alloy 718PlusTM spurred a lot of interest owing to its increased maximum service temperature over conventional Inconel 718 (704 °C versus 650 °C), good formability, and weldability together with its moderate cost. Understanding the high-temperature deformation characteristics and microstructural evolution is still of interest to many. It is known that the service performance and hot-flow behavior of this alloy are a strong function of the microstructure, particularly the grain size. To develop precise microstructure evolution models and foresee the final microstructure, it is important to understand how and under which forming conditions softening and precipitation processes occur concurrently. In this work, the softening behavior, its mechanisms, and the precipitation characteristics of 718PlusTM were investigated in two parallel studies. While cylindrical compression tests were employed to observe the hot-flow behavior, the precipitation behavior and other microstructural phenomena such as particle coarsening were tracked via hardness measurements. A precipitation–temperature–time (PTT) diagram was reported, and modeling of the flow curves via hyperbolic sine model was discussed in the light of the PTT behavior. Both “apparent” approach and “physically based” approach are implemented and two different sets of parameters were reported for the latter. Finally, recovery and recrystallization kinetics are described via Estrin–Mecking and Bergstrom, and Avrami kinetics, respectively.

References

1.
Eiselstein
,
H. L.
,
1962
, “
Age-Hardenable Nickel Alloy
,”
U.S. Patent No. 3,046,108
.https://www.google.com/patents/US3046108
2.
Kennedy
,
R.
,
2005
, “
Allvac 718PlusTM, Superalloy for the Next Forty Years
,”
Superalloys 718, 625, 706, and Derivatives
.
3.
Ott
,
E. A.
,
Groh
,
J.
, and
Sizek
,
H.
,
2005
, “
Metals Affordability Initiative: Application of Allvac Alloy 718PlusTM for Aircraft Engine Static Structural Components
,”
Superalloys 718, 625, 706, and Derivatives
.
4.
Cao
,
W.-D.
,
2005
, “
Solidification and Solid State Phase Transformation of Allvac 718PlusTM Alloy
,”
Sixth International Special Emphasis Symposium on
Superalloys 718, 625, 706 and Derivatives
, pp.
165
177
.https://www.atimetals.com/products/718plus-alloy/Documents/165.pdf
5.
Xie
,
X.
,
Dong
,
G. W. J.
,
Xu
,
C.
,
Cao
,
W.-D.
, and
Kennedy
,
R.
,
2005
, “
Structure Stability Study on a Newly Developed Nickel-Base Superalloy-Allvac 718PlusTM
,”
Sixth International Special Emphasis Symposium on Superalloys 718, 625, 706 and Derivatives
, pp.
179
191
.https://www.atimetals.com/products/718plus-alloy/Documents/179.pdf
6.
Xie
,
X.
,
Xu
,
C.
,
Wang
,
G.
,
Dong
,
J.
,
Cao
,
W.
, and
Kennedy
,
R.
,
2005
, “
TTT Diagram of a Newly Developed Nickel-Base Superalloy-Allvac 718PlusTM
,”
Sixth International Symposium on Superalloys 718, 625, 706 and Derivatives 2005
, The Minerals, Metals & Materials Society, Warrendale, PA, pp.
193
202
.https://www.atimetals.com/products/718plus-alloy/Documents/193.pdf
7.
Cozar
,
R.
, and
Pineau
,
A.
,
1973
, “
Morphology of γ and γ Precipitates and Thermal Stability of Inconel 718 Type Alloys
,”
Metall. Trans.
,
4
(
1
), pp.
47
59
.
8.
Viskari
,
L.
, and
Stiller
,
K.
,
2011
, “
Atom Probe Tomography of Ni-Base Superalloys Allvac 718Plus and Alloy 718
,”
Ultramicroscopy
,
111
(
6
), pp.
652
658
.
9.
Casanova
,
A.
,
Martín-Piris
,
N.
,
Hardy
,
M.
, and
Rae
,
C.
,
2014
, “
Evolution of Secondary Phases in Alloy ATI 718PlusTM During Processing
,”
MATEC Web Conf.
,
14
, p.
09003
.
10.
Cao
,
W.
, and
Kennedy
,
R.
,
2004
, “
Role of Chemistry in 718-Type Alloys—Allvac 718PlusTM Alloy Development
,”
Superalloys 2004
, The Minerals, Metals & Materials Society, Warrendale, PA, pp.
91
99
.http://alleghenytechnologies.com/products/718plus-alloy/Documents/Defense11a_04_576X_91.pdf
11.
Stotter
,
C.
,
Sommitsch
,
C.
,
Wagner
,
J.
,
Leitner
,
H.
,
Letofsky-Papst
,
I.
,
Zickler
,
G. A.
,
Prantl
,
W.
, and
Stockinger
,
M.
,
2008
, “
Characterization of δ-Phase in Superalloy Allvac 718PlusTM
,”
Int. J. Mater. Res.
,
99
(
4
), pp.
376
380
.
12.
Pickering
,
E.
,
Mathur
,
H.
,
Bhowmik
,
A.
,
Messé
,
O.
,
Barnard
,
J.
,
Hardy
,
M.
,
Krakow
,
R.
,
Loehnert
,
K.
,
Stone
,
H.
, and
Rae
,
C.
,
2012
, “
Grain-Boundary Precipitation in Allvac 718Plus
,”
Acta Mater.
,
60
(
6
), pp.
2757
2769
.
13.
Si
,
J.-y.
,
Liao
,
X.-h.
,
Xie
,
L.-q.
, and
Lin
,
K.-r.
,
2015
, “
Flow Behavior and Constitutive Modeling of Delta-Processed Inconel 718 Alloy
,”
J. Iron Steel Res. Int.
,
22
(
9
), pp.
837
845
.
14.
Huber
,
D.
,
Stotter
,
C.
,
Sommitsch
,
C.
,
Mitsche
,
S.
,
Poelt
,
P.
,
Buchmayr
,
B.
, and
Stockinger
,
M.
,
2008
, “
Microstructure Modeling of the Dynamic Recrystallization Kinetic During Turbine Disc Forging of the Nickel Based Superalloy Allvac 718PlusTM
,”
11th International Symposium on Superalloys
, pp.
855
861
.http://www.tms.org/superalloys/10.7449/2008/superalloys_2008_855_861.pdf
15.
Sellars
,
C. M.
, and
Tegart
,
W. M.
,
1966
, “
Relationship Between Strength and Structure in Deformation at Elevated Temperatures
,”
Mem. Sci. Rev. Metall.
,
63
(
9
), pp.
731
745
.
16.
Sellars
,
C. M.
, and
McTegart
,
W. J.
,
1966
, “
On the Mechanism of Hot Deformation
,”
Acta Metall.
,
14
(
9
), pp.
1136
1138
.
17.
Cabrera
,
J.
,
Jonas
,
J.
, and
Prado
,
J.
,
1996
, “
Flow Behaviour of Medium Carbon Microalloyed Steel Under Hot Working Conditions
,”
Mater. Sci. Technol.
,
12
(
7
), pp.
579
585
.
18.
Frost
,
H. J.
, and
Ashby
,
M. F.
,
1982
,
Deformation Mechanism Maps: The Plasticity and Creep of Metals and Ceramics
,
Pergamon Press
,
Oxford, UK
.
19.
Srinivasan
,
D.
,
Lawless
,
L. U.
, and
Ott
,
E. A.
,
2012
, “
Experimental Determination of TTT Diagram for Alloy 718PlusTM
,”
12th International Symposium on Superalloys
, pp.
759
768
.
20.
Mirzadeh
,
H.
,
Cabrera
,
J. M.
, and
Najafizadeh
,
A.
,
2012
, “
Modeling and Prediction of Hot Deformation Flow Curves
,”
Metall. Mater. Trans. A
,
43
(
1
), pp.
108
123
.
21.
Mirzadeh
,
H.
,
Cabrera
,
J.
,
Prado
,
J.
, and
Najafizadeh
,
A.
,
2011
, “
Hot Deformation Behavior of a Medium Carbon Microalloyed Steel
,”
Mater. Sci. Eng.: A
,
528
(
10
), pp.
3876
3882
.
22.
Mirzadeh
,
H.
,
Cabrera
,
J. M.
, and
Najafizadeh
,
A.
,
2011
, “
Constitutive Relationships for Hot Deformation of Austenite
,”
Acta Mater.
,
59
(
16
), pp.
6441
6448
.
23.
Suave
,
L. M.
,
Cormier
,
J.
,
Villechaise
,
P.
,
Soula
,
A.
,
Hervier
,
Z.
,
Bertheau
,
D.
, and
Laigo
,
J.
,
2014
, “
Microstructural Evolutions During Thermal Aging of Alloy 625: Impact of Temperature and Forming Process
,”
Metall. Mater. Trans. A
,
45
(
7
), pp.
2963
2982
.
24.
Suave
,
L. M.
,
Cormier
,
J.
,
Bertheau
,
D.
,
Villechaise
,
P.
,
Soula
,
A.
,
Hervier
,
Z.
, and
Hamon
,
F.
,
2016
, “
High Temperature Low Cycle Fatigue Properties of Alloy 625
,”
Mater. Sci. Eng.: A
,
650
, pp.
161
170
.
25.
Thomas
,
A.
,
El-Wahabi
,
M.
,
Cabrera
,
J.
, and
Prado
,
J.
,
2006
, “
High Temperature Deformation of Inconel 718
,”
J. Mater. Process. Technol.
,
177
(
1
), pp.
469
472
.
26.
Laasraoui
,
A.
, and
Jonas
,
J.
,
1991
, “
Prediction of Steel Flow Stresses at High Temperatures and Strain Rates
,”
Metall. Trans. A
,
22
(
7
), pp.
1545
1558
.
27.
El Wahabi
,
M.
,
Cabrera
,
J.
, and
Prado
,
J.
,
2003
, “
Hot Working of Two AISI 304 Steels: A Comparative Study
,”
Mater. Sci. Eng.: A
,
343
(
1
), pp.
116
125
.
28.
Christian
,
J. W.
,
2002
,
The Theory of Transformations in Metals and Alloys
,
Elsevier
,
Oxford, UK
.
29.
Cabrera
,
J. M.
,
1995
, “
Caracterización mecánico-metalúrgica de la conformación en caliente del acero microaleado de medio carbono 38 MnSiVS5
,” Ph.D. thesis, Departamento de Ciencia de Materiales e Ingeniería Metalúrgica, Universitat Politécnica de Catalunya, Barcelona, Spain.
You do not currently have access to this content.