The present paper analyzes the effect of passive flow control (PFC) with respect to the retrofitting on small horizontal axis wind turbines (sHAWTs). We conducted extensive wind tunnel studies on a high performance low Reynolds airfoil using different PFC elements, i.e., vortex generators (VGs) and Gurney flaps (GF). qblade, an open source blade element momentum (BEM) code, is used to study the retrofitting potential of a simulated small wind turbine. The turbine design is presented and discussed. The simulations include the data and polars gained from the experiments and give further insight into the effects of PFC on sHAWTs. Therefore, several different blades were simulated using several variations of VG positions. This paper discusses their influence on the turbine performance. The authors especially focus on the startup performance as well as achieving increased power output at lower wind speeds. The vortex generators reduce the risk of laminar separation and enhance the lift in some configurations by more than 40% at low Reynolds numbers.
Skip Nav Destination
Article navigation
March 2017
Research-Article
Potential of Retrofit Passive Flow Control for Small Horizontal Axis Wind Turbines
D. Holst,
D. Holst
Chair of Fluid Dynamics,
Hermann-Föttinger-Institut,
Technische Universität Berlin,
Müller-Breslau-Straße 8,
Berlin 10623, Germany
e-mail: David.Holst@TU-Berlin.de
Hermann-Föttinger-Institut,
Technische Universität Berlin,
Müller-Breslau-Straße 8,
Berlin 10623, Germany
e-mail: David.Holst@TU-Berlin.de
Search for other works by this author on:
G. Pechlivanoglou,
G. Pechlivanoglou
Chair of Fluid Dynamics,
Hermann-Föttinger-Institut,
Technische Universität Berlin,
Müller-Breslau-Straße 8,
Berlin 10623, Germany
Hermann-Föttinger-Institut,
Technische Universität Berlin,
Müller-Breslau-Straße 8,
Berlin 10623, Germany
Search for other works by this author on:
F. Wegner,
F. Wegner
Chair of Fluid Dynamics,
Hermann-Föttinger-Institut,
Technische Universität Berlin,
Müller-Breslau-Straße 8,
Berlin 10623, Germany
Hermann-Föttinger-Institut,
Technische Universität Berlin,
Müller-Breslau-Straße 8,
Berlin 10623, Germany
Search for other works by this author on:
C. N. Nayeri,
C. N. Nayeri
Chair of Fluid Dynamics,
Hermann-Föttinger-Institut,
Technische Universität Berlin,
Müller-Breslau-Straße 8,
Berlin 10623, Germany
Hermann-Föttinger-Institut,
Technische Universität Berlin,
Müller-Breslau-Straße 8,
Berlin 10623, Germany
Search for other works by this author on:
C. O. Paschereit
C. O. Paschereit
Chair of Fluid Dynamics,
Hermann-Föttinger-Institut,
Technische Universität Berlin,
Müller-Breslau-Straße 8,
Berlin 10623, Germany
Hermann-Föttinger-Institut,
Technische Universität Berlin,
Müller-Breslau-Straße 8,
Berlin 10623, Germany
Search for other works by this author on:
D. Holst
Chair of Fluid Dynamics,
Hermann-Föttinger-Institut,
Technische Universität Berlin,
Müller-Breslau-Straße 8,
Berlin 10623, Germany
e-mail: David.Holst@TU-Berlin.de
Hermann-Föttinger-Institut,
Technische Universität Berlin,
Müller-Breslau-Straße 8,
Berlin 10623, Germany
e-mail: David.Holst@TU-Berlin.de
G. Pechlivanoglou
Chair of Fluid Dynamics,
Hermann-Föttinger-Institut,
Technische Universität Berlin,
Müller-Breslau-Straße 8,
Berlin 10623, Germany
Hermann-Föttinger-Institut,
Technische Universität Berlin,
Müller-Breslau-Straße 8,
Berlin 10623, Germany
F. Wegner
Chair of Fluid Dynamics,
Hermann-Föttinger-Institut,
Technische Universität Berlin,
Müller-Breslau-Straße 8,
Berlin 10623, Germany
Hermann-Föttinger-Institut,
Technische Universität Berlin,
Müller-Breslau-Straße 8,
Berlin 10623, Germany
C. N. Nayeri
Chair of Fluid Dynamics,
Hermann-Föttinger-Institut,
Technische Universität Berlin,
Müller-Breslau-Straße 8,
Berlin 10623, Germany
Hermann-Föttinger-Institut,
Technische Universität Berlin,
Müller-Breslau-Straße 8,
Berlin 10623, Germany
C. O. Paschereit
Chair of Fluid Dynamics,
Hermann-Föttinger-Institut,
Technische Universität Berlin,
Müller-Breslau-Straße 8,
Berlin 10623, Germany
Hermann-Föttinger-Institut,
Technische Universität Berlin,
Müller-Breslau-Straße 8,
Berlin 10623, Germany
1Corresponding author.
Contributed by the Turbomachinery Committee of ASME for publication in the JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER. Manuscript received July 1, 2016; final manuscript received July 29, 2016; published online October 11, 2016. Editor: David Wisler.
J. Eng. Gas Turbines Power. Mar 2017, 139(3): 032604 (8 pages)
Published Online: October 11, 2016
Article history
Received:
July 1, 2016
Revised:
July 29, 2016
Citation
Holst, D., Pechlivanoglou, G., Wegner, F., Nayeri, C. N., and Paschereit, C. O. (October 11, 2016). "Potential of Retrofit Passive Flow Control for Small Horizontal Axis Wind Turbines." ASME. J. Eng. Gas Turbines Power. March 2017; 139(3): 032604. https://doi.org/10.1115/1.4034543
Download citation file:
Get Email Alerts
Cited By
Multi-Disciplinary Optimization of Gyroid Topologies for a Cold Plate Heat Exchanger Design
J. Eng. Gas Turbines Power
Comparison of Rim Sealing Effectiveness in Different Geometrical Configurations
J. Eng. Gas Turbines Power
Related Articles
A Comprehensive Comparative Investigation of the Lifting Line Theory and Blade Element Momentum Theory Applied to Small Wind Turbines
J. Energy Resour. Technol (August,2022)
Rotor Configuration Effects on the Performance of a HAWT With Tip-Mounted Mie-Type Vanes
J. Sol. Energy Eng (November,2003)
Separation Control on Low-Pressure Turbine Airfoils Using Synthetic Vortex Generator Jets
J. Turbomach (October,2003)
Separation Control on a Very High Lift Low Pressure Turbine Airfoil Using Pulsed Vortex Generator Jets
J. Turbomach (October,2011)
Related Proceedings Papers
Related Chapters
Dynamic Behavior of Pumping Systems
Pipeline Pumping and Compression Systems: A Practical Approach
Cavitating Structures at Inception in Turbulent Shear Flow
Proceedings of the 10th International Symposium on Cavitation (CAV2018)
Outlook
Closed-Cycle Gas Turbines: Operating Experience and Future Potential