At present, it is a common practice to expose engine components to main annulus air temperatures exceeding the thermal material limit in order to increase the overall engine performance and to minimize the engine specific fuel consumption. To prevent overheating of the materials and thus the reduction of component life, an internal flow system is required to cool and protect the critical engine parts. Previous studies have shown that the insertion of a deflector plate in turbine cavities leads to a more effective use of reduced cooling air, since the coolant is fed more effectively into the disk boundary layer. This paper describes a flexible design parameterization of an engine representative turbine stator well geometry with stationary deflector plate and its implementation within an automated design optimization process using automatic meshing and steady-state computational fluid dynamics (CFD). Special attention and effort is turned to the flexibility of the parameterization method in order to reduce the number of design variables to a minimum on the one hand, but increasing the design space flexibility and generality on the other. Finally, the optimized design is evaluated using a previously validated conjugate heat transfer method (by coupling a finite element analysis (FEA) to CFD) and compared against both the nonoptimized deflector design and a reference baseline design without a deflector plate.

References

1.
Illingworth
,
J.
,
Hills
,
N.
, and
Barnes
,
C. J.
,
2005
, “
3D Fluid-Solid Heat Transfer Coupling of an Aero-Engine Preswirl System
,”
ASME
Paper No. GT2005-68939.
2.
Amirante
,
D.
, and
Hills
,
N.
,
2009
, “
A Coupled Approach for Aerothermal Mechanical Modelling for Turbomachinery
,”
1st International Conference on Computational Methods for Thermal Problems
, ThermaCOMP09.
3.
Dixon
,
J. A.
,
Valencia
,
G. A.
,
Bauknecht
,
A.
,
Coren
,
D.
, and
Atkins
,
N.
,
2013
, “
Heat Transfer in Turbine Hub Cavities Adjacent to the Main Gas Path
,”
ASME J. Turbomach.
,
135
(2), p.
021025
.
4.
Da Soghe
,
R.
,
Andreini
,
A.
, and
Facchini
,
B.
,
2011
, “
Turbine Stator Well CFD Studies: Effects of Coolant Supply Geometry on Cavity Sealing Performance
,”
ASME J. Turbomach.
,
133
(2), p.
021008
.
5.
Coren
,
D. D.
,
Atkins
,
N. R.
,
Long
,
C. A.
,
Eastwood
,
D.
,
Childs
,
P. R. N.
,
Valencia
,
G. A.
, and
Dixon
,
J. A.
,
2011
, “
The Influence of Turbine Stator Well Coolant Flow Rate and Passage Configuration on Cooling Effectiveness
,”
ASME
Paper No. GT2011-46448.
6.
Pohl
,
J.
,
Fico
,
V.
, and
Dixon
,
J. A.
,
2015
, “
Turbine Stator Well Cooling—Improved Geometry Benefits
,”
ASME
Paper No. GT2015-42658.
7.
Young
,
C.
,
Snowsill
,
G. D.
,
Ferra
,
P. W.
, and
Gravett
,
C. P.
,
2012
, “
Turbine Apparatus
,” U.S. Patent No. US8186938.
8.
Shahpar
,
S.
,
Polynkin
,
A.
, and
Toropov
,
V.
,
2008
, “
Large Scale Optimization of Transonic Axial Compressor Rotor Blades
,”
AIAA
Paper No. 2008-2056.
9.
Polynkin
,
A.
,
Toropov
,
V.
, and
Shahpar
,
S.
,
2010
, “
Multidisciplinary Optimization of Turbomachinery Based on Meta-Model Built by Genetic Programming
,”
AIAA
Paper No. 2010-9397.
10.
Schlaps
,
R. C.
,
Shahpar
,
S.
, and
Gümmer
,
V.
,
2014
, “
Automatic Three-Dimensional Optimisation of a Modern Tandem Compressor Vane
,”
ASME
Paper No. GT2014-26762.
11.
Verstraete
,
T.
,
Coletti
,
F.
,
Bulle
,
J.
,
Vanderwielen
,
T.
, and
Arts
,
T.
,
2013
, “
Optimization of a U-Bend for Minimal Pressure Loss in Internal Cooling Channels—Part I: Numerical Method
,”
ASME J. Turbomach.
,
135
(
5
), p.
051015
.
12.
Lück
,
H.
,
Schäfer
,
M.
, and
Schiffer
,
H.-P.
,
2014
, “
Thermal Fluid-Structure Interaction Based Optimization of Secondary Air Flows in Rotor Stator Cavities of Aircraft Turbines
,”
WCCM XI, ECCM V, ECFD VI
.
13.
Pohl
,
J.
,
Thompson
,
H. M.
,
Valencia
,
G. A.
,
Juste
,
L. G.
,
Fico
,
V.
, and
Clayton
,
G. A.
,
2016
, “
Structural Deflection's Impact in Turbine Stator Well Heat Transfer
,”
ASME J. Eng. Gas Turbines Power
,
139
(
4
), p.
041901
.
14.
Phadke
,
U. P.
, and
Owen
,
J. M.
,
1988
, “
Aerodynamic Aspects of the Sealing of Gas Turbine Rotor-Stator Systems—Part 1: The Behaviour of Simple Shrouded Rotating Disk Systems in Quiescent Environment
,”
Int. J. Heat Fluid Flow
,
9
(
2
), pp.
98
105
.
15.
Phadke
,
U. P.
, and
Owen
,
J. M.
,
1988
, “
Aerodynamic Aspects of the Sealing of Gas Turbine Rotor-Stator Systems—Part 2: The Behaviour of Simple Seals in Quasi-Axisymmetric External Flow
,”
Int. J. Heat Fluid Flow
,
9
(
2
), pp.
106
112
.
16.
Shahpar
,
S.
,
2005
, “
SOPHY: An Integrated CFD Based Automatic Design Optimisation System
,” Report No. ISABE-2005-1086.
17.
Shahpar
,
S.
,
2002
, “
SOFT: A New Design and Optimisation Tool for Turbomachinery
,” Evolutionary Methods for Design, Optimisation and Control, CIMNE, Barcelona, Spain.
18.
Shahpar
,
S.
, and
Lapworth
,
L.
,
2003
, “
PADRAM: Parametric Design and Rapid Meshing System for Turbomachinery Optimisation
,”
ASME
Paper No. GT2003-38698.
19.
Lapworth
,
L.
,
2004
, “
Hydra-CFD: A Framework for Collaborative CFD Development
,” IC-SEC, Singapore, June 30–July 2.
20.
McKay
,
M. D.
,
Conover
,
W. J.
, and
Beckman
,
R. J.
,
1979
, “
A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code
,”
Technometrics
,
21
(
2
), pp.
239
245
.
21.
Stein
,
M.
,
1987
, “
Large Sample Properties of Simulations Using Latin Hypercube Sampling
,”
Technometrics
,
29
(
2
), pp.
143
151
.
22.
Baert
,
L.
,
Beauthier
,
C.
,
Leborgne
,
M.
, and
Lepot
,
I.
,
2015
, “
Surrogate-Based Optimisation for a Mixed-Variable Design Space: Proof of Concept and Opportunities for Turbomachinery Applications
,”
ASME
Paper No. GT2015-43254.
23.
Krige
,
D. G.
,
1951
, “
A Statistical Approach to Some Basic Mine Valuations and Allied Problems at the Witwatersrand
,” Master's thesis, University of Witwatersrand, South Africa.
24.
Matheron
,
G.
,
1963
, “
Principles of Geostatistics
,”
Econ. Geol.
,
58
(
8
), pp.
1246
1266
.
25.
Forrester
,
A. I. J.
,
Sobester
,
A.
, and
Keane
,
A. J.
,
2008
,
Engineering Design Via Surrogate Modelling: A Practical Guide
,
Wiley
,
Chichester, UK
.
26.
Forrester
,
A. I. J.
,
Keane
,
A. J.
, and
Bressloff
,
N. W.
,
2006
, “
Design and Analysis of “Noisy” Computer Experiments
,”
AIAA J.
,
44
(
10
), pp.
2331
2339
.
27.
Brooks
,
C. J.
,
Forrester
,
A. I. J.
,
Keane
,
A. J.
, and
Shahpar
,
S.
,
2011
, “
Multi-Fidelity Design Optimisation of a Transonic Compressor Rotor
,”
9th European Conference for Turbomachinery, Fluid Dynamics and Thermodynamics
,
Istanbul
,
Turkey
, Mar. 21–25, Paper No. B230.
28.
Dubrule
,
O.
,
1983
, “
Cross Validation of Kriging in Unique Neighbourhood
,”
Math. Geol.
,
15
(
6
), pp.
687
699
.
29.
Sasaki
,
D.
, and
Obayashi
,
S.
,
2005
, “
Efficient Search for Trade-Offs by Adaptive Range Multi-Objective Genetic Algorithms
,”
J. Aerosp. Comput. Inf. Commun.
,
2
(
1
), pp.
44
64
.
30.
Gill
,
P. E.
,
Murray
,
W.
, and
Wright
,
M. H.
,
1981
,
Practical Optimization
,
Academic Press
,
London
.
31.
Powell
,
M. J. D.
,
1983
, “
Variable Metric Methods for Constrained Optimization
,”
Mathematical Programming: The State of the Art
,
A.
Bachem
,
B.
Korte
, and
M.
Gr¨Atschel
, eds.,
Springer
,
Berlin
, pp.
288
311
.
32.
Guijarro Valencia
,
A.
,
Dixon
,
J. A.
,
Soghe
,
R. D.
,
Facchini
,
B.
,
Smith
,
P. E. J.
,
Munoz
,
J.
,
Eastwood
,
D.
,
Long
,
C. A.
,
Coren
,
D.
, and
Atkins
,
N. R.
,
2012
, “
An Investigation Into Numerical Analysis Alternatives for Predicting Re-Ingestion in Turbine Disc Rim Cavities
,”
ASME
Paper No. GT2012-68592.
33.
Eastwood
,
D.
,
Coren
,
D. D.
,
Long
,
C. A.
,
Atkins
,
N. R.
,
Childs
,
P. R. N.
,
Scanlon
,
T. J.
, and
Guijarro Valencia
,
A.
,
2012
, “
Experimental Investigation of Turbine Stator Well Rim Seal, Re-Ingestion and Interstage Seal Flows Using Gas Concentration Techniques and Displacement Measurements
,”
ASME J. Turbomach.
,
134
(2), p.
082501
.
34.
Dixon
,
J. A.
,
Guijarro Valencia
,
A.
,
Coren
,
D., D.
, and
Long
,
C.
,
2014
, “
Main Annulus Gas Path Interactions—Turbine Stator Well Heat Transfer
,”
ASME J. Turbomach.
,
136
(2), p.
021010
.
35.
Eastwood
,
D.
,
2014
, “
Investigation of Rim Seal Exchange and Coolant Re-Ingestion in Rotor Stator Cavities Using Concentration Techniques
,”
Ph.D. thesis
, University of Sussex, Sussex, UK.
36.
Smith
,
P. E. J.
,
Mugglestone
,
J.
,
Tham
,
K. M.
,
Coren
,
D. D.
, and
Long
,
C. A.
,
2012
, “
Conjugate Heat Transfer CFD Analysis in Turbine Disc Cavities
,”
ASME
Paper No. GT2012-69597.
37.
Launder
,
B. E.
, and
Spalding
,
D. B.
,
1974
, “
The Numerical Computation of Flows
,”
J. Comput. Methods Appl. Mech. Eng.
,
3
(
2
), pp.
269
289
.
38.
Verdicchio
,
J. A.
,
2001
, “
The Validation and Coupling of Computational Fluid Dynamics and Finite Element Codes for Solving Industrial Problems
,”
Ph.D. thesis
, University of Sussex, Sussex, UK.
You do not currently have access to this content.