Abstract

A novel modeling strategy is proposed which allows high-accuracy predictions of aerodynamic and aeroacoustic target values for a low-pressure axial fan, equipped with serrated leading edges. Inspired by machine learning processes, the sampling of the experimental space is realized by use of a Latin hypercube design plus a factorial design, providing highly diverse information on the analyzed system. The effects of four influencing parameters (IP) are tested, characterizing the inflow conditions as well as the serration geometry. A total of 65 target values in the time and frequency domains are defined and can be approximated with high accuracy by individual artificial neural networks. Furthermore, the validation of the model against fully independent test points within the experimental space yields a remarkable fit, even for the spectral distribution in 1/3-octave bands, proving the ability of the model to generalize. A metaheuristic multi-objective optimization approach provides two-dimensional Pareto optimal solutions for selected pairs of target values. This is particularly important for reconciling opposing trends, such as the noise reduction capability and aerodynamic performance. The chosen optimization strategy also allows for a customized design of serrated leading edges, tailored to the specific operating conditions of the axial fan.

References

References
1.
Chaitanya
,
P.
,
Joseph
,
P.
,
Narayanan
,
S.
,
Vanderwel
,
C.
,
Turner
,
J.
,
Kim
,
J. W.
, and
Ganapathisubramani
,
B.
,
2017
, “
Performance and Mechanism of Sinusoidal Leading Edge Serrations for the Reduction of Turbulence–Aerofoil Interaction Noise
,”
J. Fluid Mech.
,
818
, pp.
435
464
.10.1017/jfm.2017.141
2.
Chong
,
T. P.
,
Vathylakis
,
A.
,
McEwen
,
A.
,
Kemsley
,
F.
,
Muhammad
,
C.
, and
Siddiqi
,
S.
,
2015
, “
Aeroacoustic and Aerodynamic Performances of an Aerofoil Subjected to Sinusoidal Leading Edges
,”
AIAA
Paper No. 2015–2200.10.2514/6.2015-2200
3.
Kim
,
J. W.
,
Haeri
,
S.
, and
Joseph
,
P. F.
,
2016
, “
On the Reduction of Aerofoil–Turbulence Interaction Noise Associated With Wavy Leading Edges
,”
J. Fluid Mech.
,
792
, pp.
526
552
.10.1017/jfm.2016.95
4.
Zenger
,
F.
,
Renz
,
A.
, and
Becker
,
S.
,
2017
, “
Experimental Investigation of Sound Reduction by Leading Edge Serrations in Axial Fans
,”
AIAA
Paper No. 2017–3387.10.2514/1.J056355
5.
Biedermann
,
T. M.
,
Kameier
,
F.
, and
Paschereit
,
C. O.
,
2019
, “
Successive Aeroacoustic Transfer of Leading Edge Serrations From Single Airfoil to Low-Pressure Fan Application
,”
ASME J. Eng. Gas Turbines Power
,
141
(
10
), p.
101011
.10.1115/1.4044362
6.
Biedermann
,
T. M.
,
Chong
,
T. P.
,
Kameier
,
F.
, and
Paschereit
,
C. O.
,
2018
, “
On the Transfer of Leading Edge Serrations From Isolated Aerofoil to Ducted Low-Pressure Fan Application
,”
AIAA
Paper No. 2018–2956.10.2514/6.2018-2956
7.
Corsini
,
A.
,
Delibra
,
G.
,
Rispoli
,
F.
, and
Sheard
,
A. G.
,
2015
, “
Aeroacoustic Assessment of Leading Edge Bumps in Industrial Fans
,”
International Conference on Fan Noise, Technology and Numerical Methods, Lyon, France
, Apr. 15–17, pp.
1
10
.https://www.fan2021.org/archives/fan2015/papers/fp-pdf-86-CORSINI.pdf
8.
Arndt
,
R. E. A.
, and
Nagel
,
R. T.
,
1972
, “
Effect of Leading Edge Serrations on Noise Radiation From a Model Rotor
,”
AIAA
Paper No. 72–655.10.2514/6.1972-655
9.
Corsini
,
A.
,
Delibra
,
G.
, and
Sheard
,
A. G.
,
2014
, “
The Application of Sinusoidal Blade-Leading Edges in a Fan-Design Methodology to Improve Stall Resistance
,”
Proc. Inst. Mech. Eng., Part A
,
228
(
3
), pp.
255
271
.10.1177/0957650913514229
10.
Siebertz
,
K.
,
van Bebber
,
D.
, and
Hochkirchen
,
T.
,
2010
,
Statistische Versuchsplanung
,
Springer Verlag
,
Berlin
.
11.
Adam
,
M. S.
,
2012
,
Versuchsplanung und Auswertung
(DoE Design of Experiments),
University of Applied Sciences Dusseldorf
,
Germany
.
12.
Biedermann
,
T. M.
,
Reich
,
M.
,
Kameier
,
F.
,
Adam
,
M.
, and
Paschereit
,
C. O.
,
2019
, “
Assessment of Statistical Sampling Methods and Approximation Models Applied to Aeroacoustic and Vibroacoustic Problems
,”
Adv. Aircr. Spacecr. Sci. AASS
,
6
(
6
), pp.
529
550
.
13.
ISO
,
2009
, “
Acoustics—Determination of Sound Power Radiated Into a Duct by Fans and Other Air-Moving Devices—In-Duct Method
,” ISO, Geneva, Switzerland, Standard No.
ISO 5136:2003
.10.31030/1545135
14.
ISO
,
2008
, “
Industrial Fans—Performance Testing Using Standardized Airways
,” ISO, Geneva, Switerland, Standard No.
5801:2007
.https://www.iso.org/standard/39542.html
15.
Biedermann
,
T.
,
Kameier
,
F.
, and
Paschereit
,
O.
,
2018
, “
Optimised Test Rig for Measurement of Aerodynamic and Aeroacoustic Performance of Leading Edge Serrations in Low-Speed Fan Application
,”
ASME
Paper No. GT2018-75369.10.1115/GT2018-75369
16.
Biedermann
,
T. M.
, “
Aeroacoustic Transfer of Leading Edge Serrations From Single Aerofoils to Low-Pressure Fan Applications//Aeroacoustic Transfer of Leading Edge Serrations From Single Aerofoils to Low-Pressure Fan Applications
,” Ph.D. thesis,
Technical University Berlin
,
Berlin
.
17.
Laws
,
E. M.
, and
Livesey
,
J. L.
,
1978
, “
Flow Through Screens
,”
Annu. Rev. Fluid Mech.
,
10
(
1
), pp.
247
266
.10.1146/annurev.fl.10.010178.001335
18.
Alam
,
F. M.
,
McNaught
,
K. R.
, and
Ringrose
,
T. J.
,
2004
, “
A Comparison of Experimental Designs in the Development of a Neural Network Simulation Metamodel
,”
Simul. Modell. Pract. Theory
,
12
(
7–8
), pp.
559
578
.10.1016/j.simpat.2003.10.006
19.
Mckay
,
M. D.
,
Beckman
,
R. J.
, and
Conover
,
W. J.
,
2000
, “
A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code
,”
Technometrics
,
42
(
1
), pp.
55
61
.10.1080/00401706.2000.10485979
20.
Reich
,
M.
,
Adam
,
M.
, and
Lambach
,
S.
,
2017
, “
Comparison of Different Methods for Approximating Models of Energy Supply Systems and Polyoptimising the Systems-Structure and Components-Dimension
,”
ECOS 2017—The 30th International Conference on Efficiency
, Cost, Optimization and Environmental Impact of Energy Systems, San Diego, CA, July 2–6, pp.
1
12
.
21.
Joseph
,
V.
,
Roshan
, and
Hung
,
Y.
,
2008
, “
Orthogonal-MaxiMin Latin Hypercube Designs
,”
Statis. Sin.
,
18
(
1
), pp.
171
186
.http://www.jstor.org/stable/24308251
22.
Zhang
,
C.
, and
Shah
,
J. A.
,
2015
, “
Definitions of Fairness in Decision-Making Under Uncertainty
,” Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, pp.
3642
3648
.
23.
Viana
,
F. A. C.
,
2013
, “
Things You Wanted to Know About the Latin Hypercube Design and Were Afraid to Ask
,”
10th World Congress on Structural and Multidisciplinary Optimization,
Orlando, FL, May 19–24, pp.
1
9
.
24.
Hagan
,
M. T.
, and
Menhaj
,
M. B.
,
1994
, “
Training Feedforward Networks With the Marquardt Algorithm
,”
IEEE Trans. Neural Networks
,
5
(
6
), pp.
989
993
.10.1109/72.329697
25.
Hecht-Nielsen
,
R.
,
1987
, “
Kolmogorov's Mapping Neural Network Existence Theorem
,”
IEEE First Annual International Conference,
on Neural Networks No. 3, San Diego, CA, pp.
11
13
.
26.
Krömer
,
F. J.
, “
Sound Emission of Low-Pressure Axial Fans Under Distorted Inflow Conditions
,”
Ph.D. dissertation
, FAU University Press.10.25593/978-3-96147-089-1
27.
Carolus
,
T.
, and
Stremel
,
M.
, “
Blade Surface Pressure Fluctuations and Acoustic Radiation From an Axial Fan Rotor Due to Turbulent Inflow
,” Acta Acustica united with Acustica, pp.
472
482
.
28.
Cai
,
C.
,
Zuo
,
Z.
,
Maeda
,
T.
,
Kamada
,
Y.
,
Li
,
Q.
,
Shimamoto
,
K.
, and
Liu
,
S.
,
2017
, “
Periodic and Aperiodic Flow Patterns Around an Airfoil With Leading-Edge Protuberances
,”
Phys. Fluids
,
29
(
11
), p.
115110
.10.1063/1.4991596
29.
Pedro
,
H. T.
, and
Kobayashi
,
M. H.
,
2008
, “
Numerical Study of Stall Delay on Humpback Whale Flippers
,”
AIAA
Paper No. 2008–584.10.2514/6.2008-584
30.
Hansen
,
K. L.
,
Kelso
,
R. M.
, and
Dally
,
B. B.
,
2009
, “
The Effect of Leading Edge Tubercle Geometry on the Performance of Different Airfoils
,”
Proceedings of the 7th World Conference on Experimental Heat Transfer, Fluid Mechanics and Thermodynamics
(
ExHRT-7
), Krakow, Poland, June 28–July 3.http://hdl.handle.net/2440/58990
31.
Hansen
,
K. L.
,
Kelso
,
R. M.
, and
Dally
,
B. B.
,
2011
, “
Performance Variations of Leading-Edge Tubercles for Distinct Airfoil Profiles
,”
AIAA J.
,
49
(
1
), pp.
185
194
.10.2514/1.J050631
32.
Miklosovic
,
D. S.
,
Murray
,
M. M.
,
Howle
,
L. E.
, and
Fish
,
F. E.
,
2004
, “
Leading-Edge Tubercles Delay Stall on Humpback Whale (Megaptera Novaeangliae) Flippers
,”
Phys. Fluids
,
16
(
5
), pp.
L39
L42
.10.1063/1.1688341
33.
Zhang
,
M. M.
,
Wang
,
G. F.
, and
Xu
,
J. Z.
,
2014
, “
Experimental Study of Flow Separation Control on a low-Re Airfoil Using Leading-Edge Protuberance Method
,”
Exp. Fluids
,
55
(
4
), p.
321
.10.1007/s00348-014-1710-z
34.
Narayanan
,
S.
,
Chaitanya
,
P.
,
Haeri
,
S.
,
Joseph
,
P.
,
Kim
,
J. W.
, and
Polacsek
,
C.
,
2015
, “
Airfoil Noise Reductions Through Leading Edge Serrations
,”
Phys. Fluids
,
27
(
2
), p.
025109
.10.1063/1.4907798
35.
Haeri
,
S.
,
Kim
,
J. W.
,
Narayanan
,
S.
, and
Joseph
,
P.
,
2014
, “
3D Calculations of Aerofoil-Turbulence Interaction Noise and the Effect of Wavy Leading Edges
,”
AIAA
Paper No. 2014–2325.10.2514/6.2014-2325
36.
Lau
,
A. S. H.
,
Haeri
,
S.
, and
Kim
,
J. W.
,
2013
, “
The Effect of Wavy Leading Edges on Aerofoil–Gust Interaction Noise
,”
J. Sound Vib.
,
332
(
24
), pp.
6234
6253
.10.1016/j.jsv.2013.06.031
37.
Biedermann
,
T.
,
Kameier
,
F.
,
Koster
,
O.
,
Schreiber
,
D.
,
Chong
,
T. P.
, and
Paschereit
,
C. O.
,
2017
, “
Polyoptimisation of the Aerodynamic and Aeroacoustic Performance of Aerofoils With Serrated Leading Edges
,”
AIAA
Paper No. 2017–3493.10.2514/6.2017-3493
38.
Coello
,
C. A. C.
,
Pulido
,
G. T.
, and
Lechuga
,
M. S.
,
2004
, “
Handling Multiple Objectives With Particle Swarm Optimization
,”
IEEE Trans. Evol. Comput.
,
8
(
3
), pp.
256
279
.10.1109/TEVC.2004.826067
You do not currently have access to this content.