Abstract

As an important energy generation device of the compressed air energy storage (CAES) system, the radial-inflow turbine with shrouded impeller is employed to avoid the leakage flow in the rotor, especially in the high-pressure stages. However, a lack of clarity in the leakage characteristics and their drivers still prevents a systematic approach to the efficient performance and proper design of the shrouded radial turbine. In the present work, the shroud cavity leakage of the shrouded radial turbine has been studied numerically. The physical quantity synergy is innovatively employed to research the internal flow field of the shroud cavity. It is found that the influence of high rotating speed on the seal leakage cannot be neglected, and the average reduced rate of seal leakage is found to be about 9.9% for the designed clearance. The leakage mass flow rate could be reduced by increasing the rotating speed or decreasing the seal clearance. The synergy angle is able to predict the flow resistance in shroud cavity very well. According to the volume-averaged synergy angle in the seal, the dimensionless seal clearance smaller than 1.5% in the shrouded radial turbine is recommended. Compared with the seal clearance in other high-pressure shrouded turbomachines, the current recommended clearance should be within a reasonable field.

References

References
1.
Denton
,
J. D.
,
1993
, “
Loss Mechanisms in Turbomachines
,”
ASME J. Turbomach.
,
115
(
4
), pp.
621
656
.10.1115/1.2929299
2.
Simonyi
,
P. S.
, and
Boyle
,
R. J.
,
1991
, “
Comparison of a Quasi-3D Analysis and Experimental Performance for Three Compact Radial Turbines
,”
AIAA
Paper No. 91-2128. 10.2514/6.91-2128
3.
Larosiliere
,
L. M.
,
1993
, “
Navier-Stokes Analysis of Radial Turbine Rotor Performance
,”
AIAA
Paper No. 93-2555. 10.2514/6.93-2555
4.
He
,
P.
,
Sun
,
Z.
,
Guo
,
B.
,
Chen
,
H.
, and
Tan
,
C.
,
2013
, “
Aerothermal Investigation of Backface Clearance Flow in Deeply Scalloped Radial Turbines
,”
ASME J. Turbomach.
,
135
(
2
), p.
021002
.10.1115/1.4006664
5.
Marechale
,
R.
,
Ji
,
M.
, and
Cave
,
M.
,
2015
, “
Experimental and Numerical Investigation of Labyrinth Seal Clearance Impact on Centrifugal Impeller Performance
,”
ASME
Paper No. GT2015-43778. 10.1115/GT2015-43778
6.
Li
,
W.
,
Wang
,
X.
,
Zhang
,
X. H.
,
Zhang
,
X. J.
,
Zhu
,
Y.
, and
Chen
,
H.
,
2018
, “
Experimental and Numerical Investigation of Closed Radial-Inflow Turbine With Labyrinth Seals
,”
ASME J. Eng. Gas Turbines Power
,
140
(
10
), p.
102502
.10.1115/1.4039804
7.
Wang
,
X.
,
Zhang
,
X.
,
Zhu
,
Y.
,
Zhang
,
X.
,
Li
,
W.
, and
Chen
,
H.
,
2019
, “
Effect of Blade Tip Leakage Flow on Erosion of a Radial Inflow Turbine for Compressed Air Energy Storage System
,”
Energy
,
178
, pp.
195
206
.10.1016/j.energy.2019.04.139
8.
Dalbert
,
P.
,
Ribi
,
B.
,
Kmeci
,
T.
, and
Casey
,
M. V.
,
1999
, “
Radial Compressor Design for Industrial Compressor
,”
Proc. Inst. Mech. Eng., Part C
,
213
(
1
), pp.
71
83
.10.1243/0954406991522194
9.
Mischo
,
B.
,
Ribi
,
B.
,
Seebass-Linggi
,
C.
, and
Mauri
,
S.
,
2009
, “
Influence of Labyrinth Seal Leakage on Centrifugal Compressor Performance
,”
ASME
Paper No. GT2009-59524. 10.1115/GT2009-59524
10.
Zhang
,
Y.
,
Xu
,
Y.
,
Zhou
,
X.
,
Guo
,
H.
,
Zhang
,
X.
, and
Chen
,
H.
,
2019
, “
Compressed Air Energy Storage System With Variable Configuration for Accommodating Large-Amplitude Wind Power Fluctuation
,”
Appl. Energy
,
239
, pp.
957
968
.10.1016/j.apenergy.2019.01.250
11.
Guo
,
Z. Y.
,
Li
,
D. Y.
, and
Wang
,
B. X.
,
1998
, “
A Novel Concept for Convective Heat Transfer Enhancement
,”
Int. J. Heat Mass Transfer
,
41
(
14
), pp.
2221
2225
.10.1016/S0017-9310(97)00272-X
12.
Liu
,
W.
,
Liu
,
Z. C.
,
Ming
,
T. Z.
, and
Guo
,
Z. Y.
,
2009
, “
Physical Quantity Synergy in Laminar Flow Field and Its Application in Heat Transfer Enhancement
,”
Int. J. Heat Mass Transfer
,
52
(
19–20
), pp.
4669
4672
.10.1016/j.ijheatmasstransfer.2009.02.018
13.
Shao
,
Z.
,
Li
,
W.
,
Zhu
,
Y.
,
Wang
,
X.
,
Zhang
,
X.
,
Chen
,
H.
, and
Qin
,
W.
,
2019
, “
Tip Leakage Flow Analysis of an Axial Turbine Under the Effect of Separation at Low Reynolds Number
,”
Proc. Inst. Mech. Eng., Part A
, ePub.10.1177/0957650919882877
14.
Wang
,
X.
,
Li
,
W.
,
Zhang
,
X.
,
Zhu
,
Y.
,
Qin
,
W.
, and
Chen
,
H.
,
2018
, “
Flow Characteristic of a Multistage Radial Turbine for Supercritical Compressed Air Energy Storage System
,”
Proc. Inst. Mech. Eng., Part A
,
232
(
6
), pp.
622
640
.10.1177/0957650917743366
15.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
16.
Al Jubori
,
A. M.
, and
Jawad
,
Q. A.
,
2019
, “
Investigation on Performance Improvement of Small Scale Compressed-Air Energy Storage System Based on Efficient Radial-Inflow Expander Configuration
,”
Energy Convers. Manage.
,
182
, pp.
224
239
.10.1016/j.enconman.2018.12.048
17.
Simonyi
,
P. S.
,
Roelke
,
R. J.
, and
Stabe
,
R. G.
,
1995
, “
Aerodynamic Evaluation of Two Compact Radial-Inflow Turbine Rotors
,” NASA, Cleveland, OH, NASA Report No.
NASA TP-3514
.https://ntrs.nasa.gov/search.jsp?R=19960003236
18.
Zhang
,
L.
,
Zhu
,
H. R.
,
Liu
,
C. L.
, and
Tong
,
F.
,
2016
, “
Experimental and Numerical Investigation on Leakage Characteristic of Stepped Labyrinth Seal
,”
ASME
Paper No. GT2016-56743. 10.1115/GT2016-56743
19.
Kearton
,
W. J.
, and
Keh
,
T. H.
,
1952
, “
Leakage of Air Through Labyrinth Glands of Staggered Type
,”
Proc. Inst. Mech. Eng.
,
166
(
1
), pp.
180
195
.10.1243/PIME_PROC_1952_166_022_02
20.
Alshammari
,
F.
,
Karvountzis-Kontakiotis
,
A.
,
Pesiridis
,
A.
, and
Giannakakis
,
P.
,
2018
, “
Off-Design Performance Prediction of Radial Turbines Operating With Ideal and Real Working Fluids
,”
Energy Convers. Manage.
,
171
, pp.
1430
1439
.10.1016/j.enconman.2018.06.093
21.
Li
,
Z. P.
,
Zou
,
Z. P.
,
Yao
,
L. C.
,
Fu
,
C.
,
Bian
,
L.
, and
Zhang
,
W. H.
,
2018
, “
Aerodynamic Design Method of Micro-Scale Radial Turbines Considering the Effect of Wall Heat Transfer
,”
Appl. Therm. Eng.
,
138
, pp.
94
109
.10.1016/j.applthermaleng.2018.04.051
22.
Serrano
,
J. R.
,
Navarro
,
R.
,
García-Cuevas
,
L. M.
, and
Inhestern
,
L. B.
,
2018
, “
Turbocharger Turbine Rotor Tip Leakage Loss and Mass Flow Model Valid Up to Extreme Off-Design Conditions With High Blade to Jet Speed Ratio
,”
Energy
,
147
, pp.
1299
1310
.10.1016/j.energy.2018.01.083
23.
Spence
,
S. W. T.
,
Rosborough
,
R. S. E.
,
Artt
,
D.
, and
McCullough
,
G.
,
2007
, “
A Direct Performance Comparison of Vaned and Vaneless Stators for Radial Turbines
,”
ASME J. Turbomach.
,
129
(
1
), pp.
53
61
.10.1115/1.2218518
24.
Wang
,
A.
, and
Zheng
,
X.
,
2019
, “
Design Criterion for Asymmetric Twin-Entry Radial Turbine for Efficiency Under Steady and Pulsating Inlet Conditions
,”
Proc. Inst. Mech. Eng., Part D
,
233
(
8
), pp.
2246
2256
.10.1177/0954407018757926
25.
Xia
,
J.
,
Wang
,
J.
,
Wang
,
H.
, and
Dai
,
Y.
,
2018
, “
Three-Dimensional Performance Analysis of a Radial-Inflow Turbine for an Organic Rankine Cycle Driven by Low Grade Heat Source
,”
Energy Convers. Manage.
,
169
, pp.
22
33
.10.1016/j.enconman.2018.05.038
26.
Ventura
,
C. A. M.
,
Jacobs
,
P. A.
,
Rowlands
,
A. S.
,
Petrie-Repar
,
P.
, and
Sauret
,
E.
,
2012
, “
Preliminary Design and Performance Estimation of Radial Inflow Turbines: An Automated Approach
,”
ASME J. Fluid. Eng.
,
134
(
3
), p.
031102
.10.1115/1.4006174
27.
Li
,
X.
,
Lv
,
C.
,
Yang
,
S.
,
Li
,
J.
,
Deng
,
B.
, and
Li
,
Q.
,
2019
, “
Preliminary Design and Performance Analysis of a Radial Inflow Turbine for a Large-Scale Helium Cryogenic System
,”
Energy
,
167
, pp.
106
116
.10.1016/j.energy.2018.10.179
28.
Zheng
,
Y.
,
Hu
,
D.
,
Cao
,
Y.
, and
Dai
,
Y.
,
2017
, “
Preliminary Design and Off-Design Performance Analysis of an Organic Rankine Cycle Radial-Inflow Turbine Based on Mathematic Method and CFD Method
,”
Appl. Therm. Eng.
,
112
, pp.
25
37
.10.1016/j.applthermaleng.2016.10.036
29.
Yang
,
D. F.
,
Lao
,
D. Z.
,
Yang
,
C.
,
Hu
,
L.
, and
Sun
,
H.
,
2019
, “
Design and Numerical Analysis of a Forepart Rotation Vane for a Variable Nozzle Turbine
,”
Int. J. Turbo. Jet-Engines
,
36
(
3
), pp.
233
244
.10.1515/tjj-2016-0076
30.
Mueller
,
L.
,
Alsalihi
,
Z.
, and
Verstraete
,
T.
,
2013
, “
Multidisciplinary Optimization of a Turbocharger Radial Turbine
,”
ASME J. Turbomach.
,
135
(
2
), p.
021022
.10.1115/1.4007507
31.
Vannini
,
G.
,
Bertoneri
,
M.
,
Nielsen
,
K. K.
,
Iudiciani
,
P.
, and
Stronach
,
R.
,
2015
, “
Experimental Results and Computational Fluid Dynamics Simulations of Labyrinth and Pocket Damper Seals for Wet Gas Compression
,”
ASME J. Eng. Gas Turbines Power
,
138
(
5
), p.
052501
.10.1115/1.4031530
32.
Bertoneri
,
M.
,
Duni
,
S.
,
Ransom
,
D.
,
Podestà
,
L.
,
Camatti
,
M.
,
Bigi
,
M.
, and
Wilcox
,
M.
,
2012
, “
Measured Performance of Two-Stage Centrifugal Compressor Under Wet Gas Conditions
,”
ASME
Paper No. GT2012-69819. 10.1115/GT2012-69819
33.
Tian
,
Y. B.
,
Tang
,
Y. H.
,
Wang
,
Z. H.
, and
Xi
,
G.
,
2017
, “
Influence of Adjustable Inlet Guide Vanes on the Performance Characteristics of a Shrouded Centrifugal Compressor
,”
ASME
Paper No. GT2017-63918. 10.1115/GT2017-63918
34.
Wang
,
Z.
, and
Xi
,
G.
,
2011
, “
Influences of Cavity Leakage on the Design of Low Flow Coefficient Centrifugal Impeller
,”
Sci. China-Technol. Sci.
,
54
(
2
), pp.
311
317
.10.1007/s11431-010-4238-3
35.
Wang
,
Z.
,
Xu
,
L.
, and
Xi
,
G.
,
2010
, “
Numerical Investigation on the Labyrinth Seal Design for a Low Flow Coefficient Centrifugal Compressor
,”
ASME
Paper No. GT2010-23096. 10.1115/GT2010-23096
You do not currently have access to this content.