Abstract

Wind-tunnel testing of turbines cascade is an important technique for quantifying the realistic conditions of turbine-vane film cooling. However, the complex and expensive facilities needed for the multipassage design of such wind tunnels have prompted the introduction of the single-passage design strategy. In this contribution, detailed procedures for building a novel single-passage transonic wind-tunnel using additive manufacturing are presented. In addition, the detailed flow structure caused by the passage was investigated. The proposed design was evaluated step-by-step using an integrated model that successively comprised two-dimensional (2D) periodic passage simulation, 2D single-passage simulation, three-dimensional (3D) single-passage simulation, construction, and testing. The proposed design was found to achieve flow periodicity at transonic flow conditions with relatively low-flow consumption. The results were validated by comparison to the available literature data. In addition, an endwall-cooling configuration was successfully deployed using fast-response pressure-sensitive paint (fast-PSP). This study, combined with the help of commercial software and 3D printing, shed light upon strategies for time- and cost-reduction in linear cascade design, which could benefit the turbomachinery community.

References

References
1.
Giel
,
P. W.
,
Boyle
,
R. J.
, and
Bunker
,
R. S.
,
2004
, “
Measurements and Predictions of Heat Transfer on Rotor Blades in a Transonic Turbine Cascade
,”
ASME J. Turbomach.
,
126
(
1
), pp.
110
121
.10.1115/1.1643383
2.
Baughn
,
J. W.
,
1995
, “
Liquid Crystal Methods for Studying Turbulent Heat Transfer
,”
Int. J. Heat Fluid Flow
,
16
(
5
), pp.
365
375
.10.1016/0142-727X(95)00042-O
3.
Guenette
,
G. R.
,
Epstein
,
A. H.
,
Giles
,
M. B.
,
Haimes
,
R.
, and
Norton
,
R. J. G.
,
1989
, “
Fully Scaled Transonic Turbine Rotor Heat Transfer Measurements
,”
ASME J. Turbomach.
,
111
(
1
), pp.
1
7
.10.1115/1.3262231
4.
HäRing
,
M.
,
BöLcs
,
A.
,
Harasgama
,
S. P.
, and
Richter
,
J.
,
1995
, “
Heat Transfer Measurements on Turbine Airfoils Using the Naphthalene Sublimation Technique
,”
ASME J. Turbomach.
,
117
(
3
), pp.
432
439
.10.1115/1.2835679
5.
Abuaf
,
N.
,
Bunker
,
R.
, and
Lee
,
C. P.
,
1997
, “
Heat Transfer and Film Cooling Effectiveness in a Linear Airfoil Cascade
,”
ASME J. Turbomach.
,
119
(
2
), pp.
302
309
.10.1115/1.2841113
6.
Wang
,
N.
,
Shiau
,
C. C.
,
Han
,
J. C.
,
Xu
,
H.
, and
Fox
,
M.
,
2019
, “
Turbine Vane Endwall Film Cooling From Mid-Chord or Downstream Rows and Upstream Coolant Injection
,”
Int. J. Heat Mass Transfer
,
133
(
4
), pp.
247
255
.10.1016/j.ijheatmasstransfer.2018.12.079
7.
Goldstein
,
R. J.
, and
Spores
,
R. A.
,
1988
, “
Turbulent Transport on the Endwall in the Region Between Adjacent Turbine Blades
,”
ASME J. Heat Transfer
,
110
(
4a
), pp.
862
869
.10.1115/1.3250586
8.
Radomsky
,
R. W.
, and
Thole
,
K. A.
,
2000
, “
Flowfield Measurements for a Highly Turbulent Flow in a Stator Vane Passage
,”
ASME J. Turbomach.
,
122
(
2
), pp.
255
262
.10.1115/1.555442
9.
Laskowski
,
G. M.
,
Vicharelli
,
A.
,
Medic
,
G.
,
Elkins
,
C. J.
,
Eaton
,
J. K.
, and
Durbin
,
P. A.
,
2005
, “
Inverse Design of and Experimental Measurements in a Double-Passage Transonic Turbine Cascade Model
,”
ASME J. Turbomach.
,
127
(
3
), pp.
619
626
.10.1115/1.1929810
10.
Blair
,
M. F.
,
1974
, “
An Experimental Study of Heat Transfer and Film Cooling on Large-Scale Turbine Endwalls
,”
ASME
Paper No. 74-GT-33. 10.1115/74-GT-33
11.
Bailey
,
D. A.
,
1980
, “
Study of Mean- and Turbulent- Velocity Fields in a Large-Scale Turbine-Vane Passage
,”
ASME J. Eng. Power
,
102
(
1
), pp.
88
95
.10.1115/1.3230239
12.
Chung
,
J. T.
,
Simon
,
T. W.
, and
Buddhavarapu
,
J.
,
1991
, “
Three-Dimensional Flow Near the Blade/Endwall Junction of a Gas Turbine: Application of a Boundary Layer Fence
,”
ASME
Paper No. 91-GT-45. 10.1115/91-GT-45
13.
Buck
,
F. A.
, and
Prakash
,
C.
,
1995
, “
Design and Evaluation of a Single Passage Test Model to Obtain Turbine Airfoil Film Cooling Effectiveness Data
,”
ASME
Paper No. 95-GT-19. 10.1115/95-GT-19
14.
Kodzwa
,
P. M.
, and
Eaton
,
J. K.
,
2010
, “
Film Effectiveness Measurements on the Pressure Surface of a Transonic Airfoil
,”
J. Propuls. Power
,
26
(
4
), pp.
837
847
.10.2514/1.46668
15.
Arts
,
T.
,
Rouvroit
,
M. L. D.
, and
Rutherford
,
A. W.
,
1990
, “
Aero-Thermal Investigation of a Highly Loaded Transonic Guide Vane Casecade: A Test Case for Inviscid and Viscous Flow Computations
,” Von Karman Institute, Sint-Genesius-Rode, Belgium, Report No.
174
.http://resolver.tudelft.nl/uuid:1bdc512b-a625-4607-a339-3cc9b371215e
16.
Kanani
,
Y.
,
Acharya
,
S.
, and
Ames
,
F.
,
2019
, “
Large Eddy Simulation of the Laminar Heat Transfer Augmentation on the Pressure Side of a Turbine Vane Under Freestream Turbulence
,”
ASME J. Turbomach.
,
141
(
4
), p.
041004
.10.1115/1.4041599
17.
Hermanson
,
K. S.
, and
Thole
,
K. A.
,
2000
, “
Effect of Inlet Conditions on Endwall Secondary Flows
,”
J. Propuls. Power
,
16
(
2
), pp.
286
296
.10.2514/2.5567
18.
Shih
,
T. H.
,
Liou
,
W. W.
,
Shabbir
,
A.
,
Yang
,
Z.
, and
Zhu
,
J.
,
1995
, “
A New kε Eddy Viscosity Model for High Reynolds Number Turbulent Flows Model Development and Validation
,” NASA, Washington, DC, Report No.
N95-11442
.
19.
Hunt
,
J. C. R.
,
Wray
,
A. A.
, and
Moin
,
P.
,
1988
, “
Eddies, Streams, and Convergence Zones in Turbulent Flows
,” NASA, Washington, DC, Report No.
N89-24555
.https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19890015184.pdf
20.
Dubief
,
Y.
, and
Delcayre
,
F.
,
2002
, “
On Coherent-Vortex Identification in Turbulence
,”
J. Turbul.
,
1
(
1
), p.
N11
.10.1088/1468-5248/1/1/011
21.
Lynch
,
S.
,
2017
, “
Three-Dimensional Boundary Layer in a Turbine Blade Passage
,”
J. Propuls. Power
,
33
(
4
), pp.
954
963
.10.2514/1.B36232
22.
Wright
,
L. M.
,
Blake
,
S. A.
,
Rhee
,
D. H.
, and
Han
,
J. C.
,
2009
, “
Effect of Upstream Wake With Vortex on Turbine Blade Platform Film Cooling With Simulated Stator-Rotor Purge Flow
,”
ASME J. Turbomach.
,
131
(
4
), p.
021017
.10.1115/1.2952365
23.
Zhang
,
L. J.
, and
Jaiswal
,
R. S.
,
2001
, “
Turbine Nozzle Endwall Film Cooling Study Using Pressure-Sensitive Paint
,”
ASME J. Turbomach.
,
123
(
4
), pp.
730
738
.10.1115/1.1400113
24.
Wright
,
L. M.
,
Blake
,
S. A.
, and
Han
,
J. C.
,
2008
, “
Film Cooling Effectiveness Distributions on a Turbine Blade Cascade Platform With Stator-Rotor Purge and Discrete Film Hole Flows
,”
ASME J. Turbomach.
,
130
(
7
), p.
031015
.10.1115/1.2777186
25.
Zhou
,
W.
,
Peng
,
D.
,
Wen
,
X.
,
Liu
,
Y.
, and
Hu
,
H.
,
2018
, “
Unsteady Analysis of Adiabatic Film Cooling Effectiveness Behind Circular, Shaped, and Sand-Dune-Inspired Film Cooling Holes: Measurement Using Fast-Response Pressure-Sensitive Paint
,”
Int. J. Heat Mass Transfer
,
125
(
10
), pp.
1003
1016
.10.1016/j.ijheatmasstransfer.2018.04.126
26.
Qenawy
,
M.
,
Chen
,
H.
,
Peng
,
D.
,
Liu
,
Y.
, and
Zhou
,
W.
,
2020
, “
Flow Structures and Unsteady Behaviors of Film Cooling From Discrete Holes Fed by Internal Crossflow
,”
ASME J. Turbomach.
,
142
(
4
), p.
041007
.10.1115/1.4046493
27.
Zhou
,
W.
,
Johnson
,
B.
, and
Hu
,
H.
,
2017
, “
Effects of Flow Compressibility and Density Ratio on Film Cooling Performance
,”
J. Propuls. Power
,
33
(
4
), pp.
964
974
.10.2514/1.B36275
28.
Charbonnier
,
D.
,
Ott
,
P.
,
Jonsson
,
M.
,
Cottier
,
F.
, and
Köbke
,
T.
,
2009
, “
Experimental and Numerical Study of the Thermal Performance of a Film Cooled Turbine Platform
,”
ASME
Paper No. GT2009-60306.10.1115/GT2009-60306
29.
Ammari
,
H. D.
,
Hay
,
N.
, and
Lampard
,
D.
,
1989
, “
Simulation of Cooling Film Density Ratios in a Mass Transfer Technique
,”
ASME
Paper No. 89-GT-200. 10.1115/89-GT-200
30.
Shadid
,
J. N.
, and
Eckert
,
E. R. G.
,
1991
, “
The Mass Transfer Analogy to Heat Transfer in Fluids With Temperature-Dependent Properties
,”
ASME J. Turbomach.
,
113
(
1
), pp.
27
33
.10.1115/1.2927734
31.
Johnson
,
B.
,
Tian
,
W.
,
Zhang
,
K.
, and
Hu
,
H.
,
2014
, “
An Experimental Study of Density Ratio Effects on the Film Cooling Injection From Discrete Holes by Using PIV and PSP Techniques
,”
Int. J. Heat Mass Transfer
,
76
(
9
), pp.
337
349
.10.1016/j.ijheatmasstransfer.2014.04.028
32.
Qingzong
,
X.
,
Qiang
,
D.
,
Pei
,
W.
, and
Junqiang
,
Z.
,
2019
, “
Computational Study of Film Cooling and Flowfields on a Stepped Vane Endwall With a Row of Cylindrical Hole and Interrupted Slot Injections
,”
Int. J. Heat Mass Transfer
,
134
(
5
), pp.
796
806
.10.1016/j.ijheatmasstransfer.2019.01.093
33.
Li
,
X.
,
Ren
,
J.
, and
Jiang
,
H.
,
2016
, “
Influence of Different Film Cooling Arrangements on Endwall Cooling
,”
Int. J. Heat Mass Transfer
,
102
(
11
), pp.
348
359
.10.1016/j.ijheatmasstransfer.2016.06.047
34.
Chen
,
P.
,
Alqefl
,
M.
,
Li
,
X.
,
Ren
,
J.
,
Jiang
,
H.
, and
Simon
,
T.
,
2019
, “
Cooling Effectiveness and Aerodynamic Performance in a 2D-Contoured Endwall Passage With Different Mass Flow Ratios
,”
Int. J. Therm. Sci.
,
142
(
8
), pp.
233
246
.10.1016/j.ijthermalsci.2019.04.031
You do not currently have access to this content.