Abstract

Optical and laser diagnostic measurements in a nonpremixed model gas turbine (GT) burner have been performed to investigate the effect of an increase in thermal power on the flame stabilization. The model GT burner has a large bluff body base with an annular swirl region, leading to a convergent-divergent flow field at the burner exit. Under the investigated conditions, the flame stabilizes predominantly in the diverging section characterized by the swirl flow with a central recirculation zone. With increasing thermal power, the reverse flow of hot burned gases is strengthened, with the hydroxyl radical (OH) planar laser induced fluorescence (PLIF) images indicating an increase in the temperature of the burned gases. The preferred flame stabilization location coincides with the inner shear layer between the reactant inflow and the reverse flow of hot burned gases. At high thermal power, the flame seems to stabilize in regions of high fluid dynamic strain rate, highlighting the influence of the reverse flowing burned gases in the evolution of the flammable mixture upstream. However, simultaneous and time-resolved measurements of the flow-field and scalar field are needed for direct quantification of this. The results are in agreement with the flame stabilization theories based on partial fuel-air mixing and streamline divergence. The flow is seen to decelerate upstream of the flame front and the flame stabilizes in a region of low velocity, created as a result of heat release diverging the streamlines ahead of it.

References

References
1.
Candel
,
S.
,
Durox
,
D.
,
Schuller
,
T.
,
Bourgouin
,
J.-F.
, and
Moeck
,
J.
,
2014
, “
Dynamics of Swirling Flames
,”
Annu. Rev. Fluid Dyn.
,
46
(
1
), pp.
147
173
.10.1146/annurev-fluid-010313-141300
2.
Oberleithner
,
K.
,
Schimek
,
S.
, and
Paschereit
,
C.
,
2015
, “
Shear Flow Instabilities in Swirl Stabilized Combustors and Their Impact on the Amplitude Dependent Flame Response: A Linear Stability Analysis
,”
Combust. Flame
,
162
(
1
), pp.
86
99
.10.1016/j.combustflame.2014.07.012
3.
Matalon
,
M.
,
2007
, “
Intrinsic Flame Instabilities in Premixed and Nonpremixed Combustion
,”
Annu. Rev. Fluid Dyn.
,
39
(
1
), pp.
163
191
.10.1146/annurev.fluid.38.050304.092153
4.
Kypraiou
,
A.-M.
,
Giusti
,
A.
,
Allison
,
P.
, and
Mastorakos
,
E.
,
2018
, “
Dynamics of Acoustically Forced Non-Premixed Flames Close to Blow-Off
,”
Exp. Therm. Fluid Sci.
,
95
, pp.
81
87
.10.1016/j.expthermflusci.2018.01.036
5.
Tyagi
,
M.
,
Jamadar
,
N.
, and
Chakravarthy
,
S.
,
2007
, “
Oscillatory Response of an Idealized Two-Dimensional Diffusion Flame: Analytical and Numerical Study
,”
Combust. Flame
,
149
(
3
), pp.
271
285
.10.1016/j.combustflame.2006.12.020
6.
Pitts
,
W.
,
1989
, “
Assessment of Theories for the Behavior and Blowout of Lifted Turbulent Jet Diffusion Flames
,”
Proc. Combust. Inst.
,
22
(
1
), pp.
809
816
.10.1016/S0082-0784(89)80090-6
7.
Peters
,
N.
, and
Williams
,
F.
,
1983
, “
Liftoff Characteristics of Turbulent Jet Diffusion Flames
,”
AIAA J.
,
21
(
3
), pp.
423
429
.10.2514/3.8089
8.
Broadwell
,
J.
,
Dahm
,
W.
, and
Mungal
,
M.
,
1985
, “
Blowout of Turbulent Diffusion Flames
,”
Proc. Combust. Inst.
,
20
(
1
), pp.
303
310
.10.1016/S0082-0784(85)80515-4
9.
Muñiz
,
L.
, and
Mungal
,
M. G.
,
1997
, “
Instantaneous Flame-Stabilization Velocities Inlifted-Jet Diffusion Flames
,”
Combust. Flame
,
111
(
1–2
), pp.
16
31
.10.1016/S0010-2180(97)00096-5
10.
Su
,
L.
,
Sun
,
O.
, and
Mungal
,
M.
,
2006
, “
Experimental Investigation of Stabilization Mechanisms in Turbulent, Lifted Jet Diffusion Flames
,”
Combust. Flame
,
144
(
3
), pp.
494
512
.10.1016/j.combustflame.2005.08.010
11.
Upatnieks
,
A.
,
Driscoll
,
J.
,
Rasmussen
,
C.
, and
Ceccio
,
S.
,
2004
, “
Liftoff of Turbulent Jet Flames—Assessment of Edge Flame and Other Concepts Using Cinema-PIV
,”
Combust. Flame
,
138
(
3
), pp.
259
272
.10.1016/j.combustflame.2004.04.011
12.
Watson
,
K. A.
,
Lyons
,
K.
,
Donbar
,
J.
, and
Carter
,
C.
,
2000
, “
Simultaneous Rayleigh Imaging and CH-PLIF Measurements in a Lifted Jet Diffusion Flame
,”
Combust. Flame
,
123
(
1–2
), pp.
252
265
.10.1016/S0010-2180(00)00133-4
13.
Lyons
,
K.
,
2007
, “
Toward an Understanding of the Stabilization Mechanisms of Lifted Turbulent Jet Flames: Experiments
,”
Prog. Energy Combust. Sci.
,
33
(
2
), pp.
211
231
.10.1016/j.pecs.2006.11.001
14.
Boulanger
,
J.
,
Vervisch
,
L.
,
Reveillon
,
J.
, and
Ghosal
,
S.
,
2003
, “
Effects of Heat Release in Laminar Diffusion Flames Lifted on Round Jets
,”
Combust. Flame
,
134
(
4
), pp.
355
368
.10.1016/S0010-2180(03)00114-7
15.
Kalghatgi
,
G.
,
1984
, “
Lift-Off Heights and Visible Lengths of Vertical Turbulent Jet Diffusion Flames in Still Air
,”
Combust. Sci. Technol.
,
41
, pp.
17
29
.10.1080/00102208408923819
16.
Buckmaster
,
J.
,
2002
, “
Edge-Flames
,”
Prog. Energy Combust. Sci.
,
28
(
5
), pp.
435
475
.10.1016/S0360-1285(02)00008-4
17.
Lefebvre
,
A.
,
1998
,
Gas Turbine Combustion
, 2nd ed.,
Taylor and Francis
,
New York
.
18.
Gupta
,
A.
,
Lilley
,
D.
, and
Syred
,
N.
,
1984
,
Swirl Flows
,
Abacus Press
,
Kent, UK
.
19.
Duan
,
X.
,
Weigand
,
P.
,
Meier
,
W.
,
Keck
,
O.
,
Stricker
,
W.
,
Aigner
,
M.
, and
Lehmann
,
B.
,
2004
, “
Experimental Investigations and Laser Based Validation Measurements in a Gas Turbine Model Combustor
,”
Prog. Comput. Fluid Dyn.
,
4
(
3/4/5
), pp.
175
182
.10.1504/PCFD.2004.004085
20.
Masri
,
A.
,
Kalt
,
P.
, and
Barlow
,
R. S.
,
2004
, “
The Compositional Structure of Swirl-Stabilized Turbulent Nonpremixed Flames
,”
Combust. Flame
,
137
(
1–2
), pp.
1
37
.10.1016/j.combustflame.2003.12.004
21.
Masri
,
A.
,
Kalt
,
P.
,
Al-Abdeli
,
Y.
, and
Barlow
,
R. S.
,
2007
, “
Turbulence-Chemistry Interactions in Non-Premixed Swirling Flames
,”
Combust. Theory Modell.
,
11
(
5
), pp.
653
673
.10.1080/13647830701213482
22.
Janus
,
B.
,
Dreizler
,
A.
, and
Janicka
,
J.
,
2005
, “
Experimental Study on Stabilization of Lifted Swirl Flames in a Model GT Combustor
,”
Flow Turbul. Combust.
,
75
(
1–4
), pp.
293
315
.10.1007/s10494-005-8583-4
23.
Landenfeld
,
T.
,
Kremer
,
A.
,
Hassel
,
E. P.
,
Janicka
,
J.
,
Schäfer
,
T.
,
Kazenwadel
,
J.
,
Schulz
,
C.
, and
Wolfrum
,
J.
,
1998
, “
Laser-Diagnostic and Numerical Study of Strongly Swirling Natural Gas Flames
,”
Proc. Combust. Inst.
,
27
(
1
), pp.
1023
1029
.10.1016/S0082-0784(98)80502-X
24.
Höinghaus
,
K. K.
, (Eds.),
2002
,
Applied Combustion Diagnostics
,
Taylor and Francis
, New York.
25.
Malanoski
,
M.
,
Aguilar
,
M.
,
Connor
,
J.
,
Shin
,
D.
,
Nobble
,
B.
, and
Lieuwen
,
T.
,
2012
, “
Flame Leading Edge and Flow Dynamics in a Swirling, Lifted Flame
,”
ASME
Paper No. GT2012–68256.10.1115/GT2012-68256
26.
Driscoll
,
J.
, and
Temme
,
J.
,
2011
, “
Role of Swirl in Flame Stabilization
,”
AIAA
Paper No. AIAA 2011-108.10.2514/6.2011-108
27.
Al-Abdeli
,
Y.
, and
Masri
,
A.
,
2003
, “
Stability Characteristics and Flowfields of Turbulent Non-Premixed Swirling Flames
,”
Combust. Theory Model.
,
7
(
4
), pp.
731
766
.10.1088/1364-7830/7/4/007
28.
Cavaliere
,
A.
,
2013
, “
Blow-Off in Gas Turbine Combustors
,”
Ph.D. thesis
,
University of Cambridge, Cambridge, UK
.http://swirl-flame.eng.cam.ac.uk/support/publications/Cavaliere_thesis.pdf
29.
Kremer
,
A.
,
Hassel
,
E.
, and
Janicka
,
J.
,
1997
, “
Velocity Measurements in a Strongly Swirling Natural Gas Flame
,”
Forsch. Ingenieurwes.
,
63
(
9
), pp.
263
269
.10.1007/PL00010836
30.
El-Asrag
,
H.
, and
Menon
,
S.
,
2007
, “
Large Eddy Simulation of Bluff-Body Stabilized Swirling Non-Premixed Flames
,”
Proc. Combust. Inst.
,
31
(
2
), pp.
1747
1754
.10.1016/j.proci.2006.07.251
31.
Kempf
,
A.
,
Lindstedt
,
R.
, and
Janicka
,
J.
,
2006
, “
Large-Eddy Simulation of a Bluff-Body Stabilized Nonpremixed Flame
,”
Combust. Flame
,
144
(
1–2
), pp.
170
189
.10.1016/j.combustflame.2005.07.006
32.
Yang
,
Y.
, and
Kær
,
S. K.
,
2012
, “
Large-Eddy Simulations of the Non-Reactive Flow in the Sydney Swirl Burner
,”
Int. J. Heat Fluid Flow
,
36
, pp.
47
57
.10.1016/j.ijheatfluidflow.2012.02.008
33.
Kawahara
,
H.
, and
Nishimura
,
T.
,
2012
, “
Improvement in Flame Stability of Diffusion Flame Using a Bluff-Body Swirling Jet Combustor
,”
Proceedings of Ninth International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics
,
Malta, Spain
, July 16–18. http://hdl.handle.net/2263/43020
34.
Tong
,
Y.
,
Liu
,
X.
,
Wang
,
Z.
,
Richter
,
M.
, and
Klingmann
,
J.
,
2018
, “
Experimental and Numerical Study on Bluff-Body and Swirl Stabilized Diffusion Flames
,”
Fuel
,
217
, pp.
352
264
.10.1016/j.fuel.2017.12.061
35.
Sadanandan
,
R.
,
2015
, “
Ultra Lean Non-Premixed Gaseous Fuel Burner
,” Indian Patent Application No. 6632/CHE/2015.
36.
Jarpala
,
R.
,
Burle
,
N.
,
Voleti
,
M.
, and
Sadanandan
,
R.
,
2017
, “
Effect of Swirl on the Flame Dynamics and Pollutant Emissions in an Ultra-Lean Non-Premixed Model GT Burner
,”
Combust. Sci. Technol.
,
189
(
10
), pp.
1832
1848
.10.1080/00102202.2017.1333500
37.
Sadanandan
,
R.
,
Chakraborty
,
A.
,
Arumugam
,
V.
, and
Chakravarthy
,
S.
,
2017
, “
Experimental Analysis of the Combustion Behaviour of a Gas Turbine Burner by Laser Measurement Techniques
,”
Proceedings of Asia-Pacific Conference on Combustion
,
Sydney, Australia
, Dec. 11–14, Paper No. P360.
38.
Sadanandan
,
R.
,
Chakraborty
,
A.
,
Arumugam
,
V.
, and
Chakravarthy
,
S.
,
2018
, “
Optical and Laser Diagnostic Investigation of Flame Stabilization in a Novel, Ultra-Lean, Non-Premixed Model GT Burner
,”
Combust. Flame
,
196
, pp.
466
477
.10.1016/j.combustflame.2018.06.028
39.
Sciacchitano
,
A.
,
Neal
,
D.
,
Smith
,
B.
,
Warner
,
S.
,
Vlachos
,
P.
,
Wieneke
,
B.
, and
Scarano
,
F.
,
2015
, “
Collaborative Framework for PIV Uncertainty Quantification: Comparative Assessment of Methods
,”
Meas. Sci. Technol.
,
26
(
7
), p.
074004
.10.1088/0957-0233/26/7/074004
40.
Barlow
,
R.
,
Dibble
,
R.
,
Chen
,
J.-Y.
, and
Lucht
,
R. P.
,
1990
, “
Effect of Damköhler Number on Super Equilibrium OH Concentration in Turbulent Nonpremixed Jet Flames
,”
Combust. Flame
,
82
(
3–4
), pp.
235
251
.10.1016/0010-2180(90)90001-8
41.
Sadanandan
,
R.
,
Stöhr
,
M.
, and
Meier
,
W.
,
2008
, “
Simultaneous OH-PLIF and PIV Measurements in a Gas Turbine Model Combustor
,”
Appl. Phys. B
,
90
(
3–4
), pp.
609
618
.10.1007/s00340-007-2928-8
42.
Najm
,
H.
,
Paul
,
P.
,
Mueller
,
C.
, and
Wyckoff
,
P.
,
1998
, “
On the Adequacy of Certain Experimental Observables as Measurements of Flame Burning Rate
,”
Combust. Flame
,
113
(
3
), pp.
312
332
.10.1016/S0010-2180(97)00209-5
43.
Luque
,
J.
, and
Crosley
,
D.
,
1999
, “
LIFBASE: Database and Spectral Simulation Program (Version 1.5)
,” SRI International Report, Report No.
99-009
.https://scirp.org/reference/ReferencesPapers.aspx?ReferenceID=2159867
44.
Donbar
,
J.
,
Driscoll
,
J. F.
, and
Carter
,
C.
,
2001
, “
Strain Rates Measured Along the Wrinkled Flame Contour Within Turbulent Non-Premixed Jet Flames
,”
Combust. Flame
,
125
(
4
), pp.
1239
1257
.10.1016/S0010-2180(01)00246-2
45.
Lyons
,
K.
,
Watson
,
K.
,
Carter
,
C.
, and
Donbar
,
J.
,
2005
, “
On Flame Holes and Local Extinction in Lifted-Jet Diffusion Flames
,”
Combust. Flame
,
142
(
3
), pp.
308
313
.10.1016/j.combustflame.2005.04.006
46.
Boxx
,
I.
,
Heeger
,
C.
,
Gordon
,
R.
,
Böhm
,
B.
,
Aigner
,
M.
,
Dreizler
,
A.
, and
Meier
,
W.
,
2009
, “
Simultaneous Three-Component PIV/OH-PLIF Measurements of a Turbulent Lifted, C3H8-Argon Jet Diffusion Flame at 1.5 kHz Repetition Rate
,”
Proc. Combust. Inst.
,
32
(
1
), pp.
905
912
.10.1016/j.proci.2008.06.023
47.
Yu
,
S.
,
Bai
,
X.-S.
, and
Sadanandan
,
R.
,
2019
, “
Numerical Studies of Flame Extinction and Re-Ignition Behaviors in a Novel, Ultra-Lean, Non-Premixed Model GT Burner Using PDF-ESF Method
,”
Fuel
, 262, p.
116617
.10.1016/j.fuel.2019.116617
You do not currently have access to this content.