Abstract

In this work, a simplified kinetic model of the SO3 generation reaction is proposed with a test diesel engine, and the semikinetic model was further developed and applied to predict the acid dew point (ADP) temperature. In the model, the one-dimensional combustion model and the reaction kinetic model of O-radicals and SO3 generation were considered. The recommended kinetic constant equation was also provided. In addition, the evolution of O-radicals and SO3 and the effects of both on the semikinetic ADP model were also discussed. To the best of my knowledge, the introduction of dynamics into the ADP model is a new and noteworthy contribution. The research results indicated that the ADP model based on the semikinetic method improved the prediction accuracy of the thermodynamic ADP model. The key factors in the O2 dissociation reaction were the high-temperature environment and the presence of flame and ignition. The O-radical concentration played a leading role in the SO3 formation reaction, and the SO3/SO2 conversion ratio was less than 10% in the cylinder.

References

References
1.
Fazal
,
M. A.
,
Haseeb
,
A.
, and
Masjuki
,
H. H.
,
2011
, “
Effect of Temperature on the Corrosion Behavior of Mild Steel Upon Exposure to Palm Biodiesel
,”
Energy
,
36
(
5
), pp.
3328
3334
.10.1016/j.energy.2011.03.028
2.
Singh
,
B.
,
Korstad
,
J.
, and
Sharma
,
Y. C.
,
2012
, “
A Critical Review on Corrosion of Compression Ignition (CI) Engine Parts by Biodiesel and Biodiesel Blends and Its Inhibition
,”
Renewable Sustainable Energy Rev.
,
16
(
5
), pp.
3401
3408
.10.1016/j.rser.2012.02.042
3.
Wang
,
Y. C.
, and
Tang
,
G. H.
,
2016
, “
Prediction of Sulfuric Acid Dew Point Temperature on Heat Transfer Fin Surface
,”
Appl. Therm. Eng.
,
98
, pp.
492
501
.10.1016/j.applthermaleng.2015.12.078
4.
Cordtz
,
R. F.
,
2015
, “
The Influence of Fuel Sulfur on the Operation of Large Two-Stroke Marine Diesel Engines
,” Technical University of Danmark, Copenhagen, Denmark.https://orbit.dtu.dk/en/publications/the-influence-of-fuel-sulfur-on-the-operation-of-large-two-stroke
5.
Zheng
,
C.
,
Li
,
X.
,
Yang
,
Z.
,
Zhang
,
Y.
,
Wu
,
W.
,
Wu
,
X.
,
Wu
,
X.
,
Gao
,
X.
,
2017
, “Development and Experimental Evaluation of a Continuous Monitor for SO3 Measurement,”
Energy & Fuels
, 31(9), pp.
9684
9692
.10.1021/acs.energyfuels.7b01181
6.
Engel
,
P. K.
,
Thompson
,
R. E.
, and
Silvestrini
,
R.
,
1979
, “
Corrosion and Fouling Potential in Diesel Exhausts
,”
ASME J. Eng. Power
,
101
(
4
), pp.
598
606
10.1115/1.3446625
7.
Jk
,
F.
,
Yt
,
S.
, and
Rc
,
Y.
,
2003
,
Principle and Calculation of the Boiler
, 2nd ed.,
Science Press
,
Beijing, China
.
8.
Able
,
E.
,
1946
, “
The Vapour-Phase Above the System Sufhuric Acid-Water
,”
J. Chem. Phys.
,
50
, pp.
260
283
.10.1021/j150447a011
9.
Muller
,
P.
,
1959
, “
Contribution to the Problem of the Action of Sulfuric Acid on the Dew Point Temperature of Flue Gases
,”
Chem. Eng. Technol.
,
31
, pp.
345
350
.
10.
Halstead
,
W. D.
, and
Talbot
,
J. R. W.
,
1980
, “
Sulphuric Acid Dewpoint in Power Station Flue Gases
,”
J. Inst. Energy
,
53
(
416
), pp.
142
145
.http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=PASCAL8130327192
11.
Okkes
,
A. G.
,
1987
, “
Get Acid Dew Point of Flue Gas
,”
Hydrocarbon Process.
66(7), pp.
53
55
.https://www.osti.gov/biblio/6450139-get-acid-dew-point-flue-gas
12.
Verhoff
,
F. H.
, and
Banchero
,
J. T.
,
1974
, “
Predicting Dew Points of Fiue Gas
,”
Chem. Eng. Prog.
78(8), pp.
71
72
.
13.
Cen
,
K. F.
,
Fan
,
J. R.
, and
Chi
,
Z. H.
,
1994
,
Boiler and Heat Exchanger Fouling, Slagging, Abrasion, and Corrosion Prevention Principles and Calculation
,
Science Press
,
Beijing, China
.
14.
Haase
,
R.
, and
Borgmann
,
H. W.
,
1962
, “
Präzisionsmessungen zur Ermittlung von Säuretaupunkten
,” Mitteilungen Der VGB, 76(2).
15.
Zong
,
C.
,
Zhang
,
X.
, and
Wang
,
Q.
,
2014
, “
Analysis on the Calculation Methods of Acid Dew Point of Flue Gas
,”
Adv. Mater. Res.
,
960–961
, pp.
414
421
.10.4028/www.scientific.net/AMR.960-961.414
16.
Xiang
,
B.
,
Zhang
,
M.
,
Yang
,
H.
, and
Lu
,
J.
,
2016
, “
Prediction of Acid Dew Point in Flue Gas of Boilers Burning Fossil Fuels
,”
Energy Fuels
,
30
(
4
), pp.
3365
3373
.10.1021/acs.energyfuels.6b00491
17.
Bahadori
,
A.
,
2011
, “
Estimation of Combustion Flue Gas Acid Dew Point During Heat Recovery and Efficiency Gain
,”
Appl. Therm. Eng.
,
31
(
8–9
), pp.
1457
1462
.10.1016/j.applthermaleng.2011.01.020
18.
Quraishi
,
M. A.
, and
Khan
,
S.
,
2006
, “
Inhibition of Mild Steel Corrosion in Sulfuric Acid Solution by Thiadiazoles
,”
J. Appl. Electrochem.
,
36
(
5
), pp.
539
544
.10.1007/s10800-005-9087-6
19.
Saeed
,
M. T.
,
2004
, “
Corrosion Inhibition of Carbon Steel in Sulfuric Acid by Bicyclic Isoxazolidines
,”
Anti-Corros. Methods Mater.
,
51
, pp.
389
398
.10.1108/00035590410560930
20.
Krasikov
,
S. A.
,
Chumarev
,
V. M.
,
Sviridova
,
M. N.
,
Udoeva
,
L. Y.
,
Timofeev
,
M. V.
,
Safonov
,
A. V.
,
Fedorov
,
V. D.
, and
Arzhatkina
,
O. A.
,
2004
, “
Effect of Phase Composition on Sulfuric Acid Leaching of Tantalum-Containing Alloys
,”
Russ. J. Appl. Chem.
,
77
(
2
), pp.
196
200
.10.1023/B:RJAC.0000030349.82458.2e
21.
Weast
,
R. C.
,
Astle
,
M. J.
, and
Beyer
,
W. H.
,
1988
,
CRC Handbook of Chemistry and Physics
,
CRC Press
,
Boca Raton, FL
.
22.
Cherif
,
M.
,
Mgaidi
,
A.
,
Naceur
,
M.
,
Abderrabba
,
M.
, and
Furst
,
W.
,
2002
, “
Representation of VLE and Liquid Phase Composition With an Electrolyte Model: Application to H3PO4–H2O and H2SO4-H2O
,”
Fluid Phase Equilibria
,
194–197
, pp.
729
738
.10.1016/S0378-3812(01)00688-4
23.
Hunter
,
S. C.
,
1982
, “
Formation of SO3 in Gas Turbines
,”
ASME J. Eng. Power
,
104
(
1
), pp.
44
50
.10.1115/1.3227262
24.
Jung
,
H.
,
Kittelson
,
D. B.
, and
Zachariah
,
M. R.
,
2006
, “
Characteristics of SME Biodiesel-Fueled Diesel Particle Emissions and the Kinetics of Oxidation
,”
Environ. Sci. Technol.
,
40
(
16
), pp.
4949
4955
.10.1021/es0515452
25.
Fleig
,
D.
,
Andersson
,
K.
,
Normann
,
F.
, and
Johnsson
,
F.
,
2011
, “
SO3 Formation Under Oxyfuel Combustion Conditions
,”
Ind. Eng. Chem. Res.
,
50
(
14
), pp.
8505
8514
.10.1021/ie2005274
26.
Belo
,
L. P.
,
Elliott
,
L. K.
,
Stanger
,
R. J.
,
Spörl
,
R.
,
Shah
,
K. V.
,
Maier
,
J.
, and
Wall
,
T. F.
,
2014
, “
High-Temperature Conversion of SO2 to SO3: Homogeneous Experiments and Catalytic Effect of Fly Ash From Air and Oxy-Fuel Firing
,”
Energy Fuels
,
28
(
11
), pp.
7243
7251
.10.1021/ef5020346
27.
Marier
,
P.
, and
Dibbs
,
H. P.
,
1974
, “
The Catalytic Conversion of SO2 to SO3 by Fly Ash and the Capture of SO2 and SO3 by CaO and MgO
,”
Thermochim. Acta
,
8
(
1–2
), pp.
155
165
.10.1016/0040-6031(74)85082-3
28.
Jorgensen
,
T. L.
,
Livbjerg
,
H.
, and
Glarborg
,
P.
,
2007
, “
Homogeneous and Heterogeneously Catalyzed Oxidation of SO2
,”
Chem. Eng. Sci.
,
62
(
16
), pp.
4496
4499
.10.1016/j.ces.2007.05.016
29.
Wickert
,
K.
,
1962
, “
Die Katalytische SO2-Oxydation in Abhängigkeit von der Verweilzeit der Gase im Reaktionsraum
,”
BWK
,
14
, pp.
20
21
.http://scholar.google.com/scholar_lookup?hl=en&publication_year=1962&pages=20-21&author=K.+Wickert&title=Die+katalytische+SO2-Oxydation+in+Abhängigkeit+von+der+Verweilzeit+der+Gase+im+Reaktionsraum
30.
Urbanek
,
A.
, and
Trela
,
M.
,
1980
, “
Catalytic Oxidation of Sulfur Dioxide
,”
Catal. Rev.-Sci. Eng.
,
21
(
1
), pp.
73
133
.10.1080/03602458008068061
31.
Hindiyarti
,
L.
,
Glarborg
,
P.
, and
Marshall
,
P.
,
2007
, “
Reactions of SO3 With the O/H Radical Pool Under Combustion Conditions
,”
J. Phys. Chem. A
,
111
(
19
), pp.
3984
3991
.10.1021/jp067499p
32.
Burdett
,
N. A.
,
Langdon
,
W. E.
, and
Squires
,
R. T.
,
1984
, “
Rate  Coefficients for the Reaction SO2+O2→SO3+O in the Temperature Range 900-1350 K
,”
J. Inst. Energy
,
57
(
432
), pp.
373
376
.https://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=9218108
33.
Hinckel
,
P.
, and
Naia
,
F.
,
2009
, “
Computational Optimization of a Two-Stroke Engine Operating With CAI Combustion
,”
SAE
Paper No. 2009-36-0407. 10.4271/2009-36-0407
34.
Rezaei
,
R.
,
Eckert
,
P.
,
Seebode
,
J.
,
Behnk
,
K.
, and
IAV Gmbh
,
2012
, “
Zero-Dimensional Modeling of Combustion and Heat Release Rate in DI Diesel Engines
,”
SAE Int. J. Engines
,
5
(
3
), pp.
874
885
.10.4271/2012-01-1065
35.
Alzueta
,
M. U.
,
Bilbao
,
R.
, and
Glarborg
,
P.
,
2001
, “
Inhibition and Sensitization of Fuel Oxidation by SO2
,”
Combust. Flame
,
127
(
4
), pp.
2234
2251
.10.1016/S0010-2180(01)00325-X
36.
Astholz
,
D. C.
,
Glänzer
,
K.
, and
Troe
,
J.
,
1979
, “
The Spin-Forbidden Dissociation-Recombination Reaction SO3⇋SO2+O
,”
J. Chem. Phys.
,
70
(
5
), pp.
2409
2413
.10.1063/1.437751
37.
Troe
,
J.
,
1978
, “
Atom and Radical Recombination Reactions
,”
Annu. Rev. Phys. Chem.
,
29
(
1
), pp.
223
250
.10.1146/annurev.pc.29.100178.001255
38.
Merryman
,
E. L.
, and
Levy
,
A.
,
1971
, “
Sulfur Trioxide Flame Chemistry-H2S and COS Flames
,”
Symp. (Int.) Combust.
,
13
(
1
), pp.
427
436
.10.1016/S0082-0784(71)80045-0
39.
Cullis
,
C. F.
, and
Mulcahy
,
M.
,
1972
, “
The Kinetics of Combustion of Gaseous Sulphur Compounds
,”
Combust. Flame
,
18
(
2
), pp.
225
292
.10.1016/S0010-2180(72)80139-1
40.
Bamford
,
C. H.
, and
Tipper
, C. F. H
.
,
1972
,
Comprehensive Chemical Kinetics: The Theory of Kinetics
, Vol.
13
,
Elsevier Publishing
, New York. 
41.
Garvin
,
D.
,
1973
, “
Sixty-Six Contributed Rate and Photochemical Data Evaluations on Ninety-Four Reactions
,” Interim Rep. NBSIR 73-206, Nat. Bur. of Stand., Washington, DC. 
42.
Fleig
,
D.
,
Alzueta
,
M. U.
,
Normann
,
F.
,
Abián
,
M.
,
Andersson
,
K.
, and
Johnsson
,
F.
,
2013
, “
Measurement and Modeling of Sulfur Trioxide Formation in a Flow Reactor Under Post-Flame Conditions
,”
Combust. Flame
,
160
(
6
), pp.
1142
1151
.10.1016/j.combustflame.2013.02.002
You do not currently have access to this content.