Abstract

Lean staged combustion can reduce the NOx emissions by prevaporizing and premixing fuel with air, which is considered the state-of-the-art solution strategy in achieving low emission in aeronautical combustors. However, lean premixed combustion is subjected to combustion stability problems, which restrict the ground and altitude operation limits of the commercial engine. In this work, the effect of the swirl intensity of pilot inner swirler on combustion stability of a lean staged injector is experimentally and numerically studied. The lean staged injector is piloted by a dual swirler prefilm atomizer. The swirl intensity of the pilot inner swirler is varied by parameterizing the vane angle as +20 deg, −20 deg, and −35 deg, with −20 deg selected as the baseline with a counterswirling design. A single sector model combustor is designed, and the nonreacting flow field and fuel concentration distributions are measured by particle image velocimetry (PIV) and kerosene planar laser induced fluorescence (kerosene-PLIF) techniques. The alteration of swirl direction from counterswirling to coswirling induces a negligible effect on flow structures, but the spray distribution changes from a solid pattern to a hollow pattern. The increase in the pilot inner swirl intensity causes a shrunk cyclone recirculation zone (CRZ) and a reduction of kerosene concentration in the central region. The influences of the pilot inner swirler angle on combustion stability are evaluated. The ignition and lean blow-out (LBO) results show that the baseline injector exhibits excellent combustion stability, while the coswirling design holds the highest ignition and LBO fuel–air ratio (FAR). In order to find out the physical mechanisms dominating the ignition and LBO processes, nonreacting numerical simulations are conducted to provide information regarding the flow structures and kerosene concentrations at ignition limits. Moreover, the ignition sequences are redefined as the radial flame propagation phase, the axial flame propagation phase, and the flame stabilization phase. The comparison of kerosene concentration along the radial and axial propagation routes concludes that the fuel enrichment in the two processes improves the ignition performance. On the other hand, the Karlovitz number of flame anchoring points in the flame rooting region is calculated to evaluate the flame stabilization characteristics. The results indicate that promoting the number of flame anchoring points and their radial range benefits the LBO performance.

References

References
1.
Lefebvre
,
A. H.
, and
Ballal
,
D. R.
,
2010
, “
Gas Turbine Combustion: Alternative Fuels and Emissions
,” CRC Press, Boca Raton, FL. 
2.
Foust
,
M. J.
,
Thomsen
,
D.
,
Stickles
,
R.
,
Coopper
,
C.
, and
Dodds
,
W.
,
2012
, “
Development of the GE Aviation Low Emissions TAPS Combustor for Next Generation Aircraft Engines
,”
AIAA
Paper No. 2012-0936.10.2514/6.2012-0936
3.
Stickles
,
R.
, and
Barrett
,
J.
,
2013
, “
TAPS II Combustor Final Report, Submitted to Continuous Lower Energy, Emissions and Noise (CLEEN) Program
,” General Electric, Boston, MA.https://www.faa.gov/about/office_org/headquarters_offices/apl/research/aircraft_technology/cleen/reports/media/taps_ii_public_final_report.pdf
4.
Fu
,
Z.
,
Lin
,
Y.
,
Li
,
L.
, and
Zhang
,
C.
,
2014
, “
Experimental and Numerical Studies of a Lean-Burn Internally Staged Combustor
,”
Chin. J. Aeronaut.
,
27
(
3
), pp.
488
496
.10.1016/j.cja.2013.12.017
5.
Fu
,
Z.
,
Lin
,
Y.
,
Li
,
J.
, and
Sung
,
C.
,
2011
, “
Experimental Investigation on Ignition Performance of LESS Combustor
,”
ASME
Paper No. GT2011-45786. 10.1115/GT2011-45786
6.
Kang
,
Y.
,
Lin
,
Y.
,
Fu
,
Z.
, and
Zhang
,
C.
,
2014
, “
Experimental and Numerical Study of the Effect of Step Height on a LESS Combustor Under Low-Power Operation
,”
ASME
Paper No. GT2014-25271. 10.1115/GT2014-25271
7.
Wang
,
B.
,
Zhang
,
C.
,
Lin
,
Y.
,
Hui
,
X.
, and
Li
,
J.
,
2017
, “
Influence of Main Swirler Vane Angle on the Ignition Performance of TeLESS-II Combustor
,”
ASME J. Eng. Gas Turbines Power
,
139
(
1
), p.
011501
.10.1115/1.4034154
8.
Mi
,
X.
,
Zhang
,
C.
,
Wang
,
B.
, and
Lin
,
Y.
,
2017
, “
Influence of Main Stage Air Splits on the Ignition Performance of TELESS-II Combustor
,”
ASME
Paper No. GT2017-63216. 10.1115/GT2017-63216
9.
Liu
,
C.
,
Liu
,
F.
,
Yang
,
J.
,
Mu
,
Y.
,
Hu
,
C.
, and
Xu
,
G.
,
2017
, “
Experimental Investigation of Spray and Combustion Performances of a Fuel-Staged Low Emission Combustor: Effects of Main Swirl Angle
,”
ASME J. Eng. Gas Turbines Power
,
139
(
12
), p.
121502
.10.1115/1.4037451
10.
Liu
,
C.
,
Liu
,
F.
,
Yang
,
J.
,
Mu
,
Y.
, and
Xu
,
G.
,
2018
, “
Experimental Investigation of Spray and Combustion Performances of a Fuel-Staged Low Emission Combustor—Part II: Effects of Venturi Angle
,”
ASME
Paper No. GT2018-76452. 10.1115/GT2018-76452
11.
Bhagwan
,
R.
,
Wollgarten
,
J. C.
,
Habisreuther
,
P.
, and
Zarzalis
,
N.
,
2014
, “
Experimental Investigation on Lean Blow Out of a Piloted Aero-Engine Burner
,”
ASME
Paper No. GT2014-25199. 10.1115/GT2014-25199
12.
Lazik
,
W.
,
Doerr
,
T.
,
Bake
,
S.
,
Bank
,
R.
, and
Rankwitz
,
L.
,
2008
, “
Development of Lean-Burn Low-NOx Combustion Technology at Rolls-Royce Deutschland
,”
ASME
Paper No. GT2008-51115. 10.1115/GT2008-51115
13.
Antoshkiv
,
O.
, and
Berg
,
H. P.
,
2008
, “
Spray Phenomena and Their Influence on the Ignition Performance of a Model Aeroengine Combustor
,” ILASS, Como Lake, Italy, Sept. 8–10, Paper ID:
ILASS08-11-1
.http://www.ilasseurope.org/ICLASS/ILASS2008_COMO/file/papers/11-1.pdf
14.
Soworka
,
T.
,
Gerendas
,
M.
,
Eggels
,
R. L. G. M.
, and
Mastorakos
,
E.
,
2014
, “
Numerical Investigation of Ignition Performance of a Lean Burn Combustor at Sub-Atmosphere Conditions
,”
ASME
Paper No. GT2014-25644. 10.1115/GT2014-25644
15.
Kobayashi
,
M.
,
Ogata
,
H.
,
Oda
,
T.
, and
Matsutyama
,
R.
,
2011
, “
Improvement on Ignition Performance for a Lean Staged Low NOX Combustor
,”
ASME
Paper No. GT2011-46187. 10.11115/GT2011-46187
16.
Yang
,
J.
,
Liu
,
C.
,
Liu
,
F.
,
Mu
,
Y.
, and
Xu
,
G.
,
2018
, “
Experimental and Numerical Study of the Effect of Main Stage Stratifier Length on Lean Blow-Out Performance for a Stratified Partially Premixed Injector
,”
Proc. ImechE Part A: J. Power Energy
,
232
(
7
), pp.
812
825
.10.1177/0957650918758227
17.
Yang, J., Liu, C., Wu, H., Liu, F., Mu, Y., and Xu, G.
,
2018
, “
Experimental Investigation of Ignition and LBO Characteristics of SPP Injector: The Effect of Pilot Stage Air Split Ratio
,”
ASME
Paper No. GT2018-76282. 10.1115/GT2018-76282
18.
Mastorakos
,
E.
,
2017
, “
Forced Ignition of Turbulent Spray Flames
,”
Proc. Combust. Inst.
,
36
(
2
), pp.
2367
2391
.10.1016/j.proci.2016.08.044
19.
Stöhr
,
M.
,
Boxx
,
I.
,
Carter
,
C.
, and
Meier
,
W.
,
2011
, “
Dynamics of Lean Blowout of a Swirl-Stabilized Flame in a Gas Turbine Model Combustor
,”
Proc. Combust. Inst.
,
33
(
2
), pp.
2953
2960
.10.1016/j.proci.2010.06.103
20.
Stöhr
,
M.
,
Arndt
,
C. M.
, and
Meier
,
W.
,
2013
, “
Effects of Damköhler Number on Vortex–Flame Interaction in a Gas Turbine Model Combustor
,”
Proc. Combust. Inst.
,
34
(
2
), pp.
3107
3115
.10.1016/j.proci.2012.06.086
21.
Zhang
,
Q.
,
Shanbhogue
,
S. J.
,
Shreekrishna
,
Lieuwen T.
, and
O'connor
,
J.
,
2011
, “
Strain Characteristics Near The Flame Attachment Point In a Swirling Flow
,”
Combust. Sci. Technol.
,
183
, pp.
665
685
.10.1080/00102202.2010.537288
22.
Shanbhogue
,
S. J.
,
Sanusi
,
Y. S.
,
Taamallah
,
S.
,
Habib
,
M. A.
,
Mokheimer
,
E. M. A.
, and
Ghoniem
,
A. F.
,
2016
, “
Flame Macrostructures, Combustion Instability and Extinction Strain Scaling in Swirl-Stabilized Premixed CH4/H2 Combustion
,”
Combust. Flame
,
163
, pp.
494
507
.10.1016/j.combustflame.2015.10.026
23.
Lutz
,
A. E.
,
Kee
,
R. J.
,
Grcar
,
J. F.
, and
Rupley
,
F. M.
,
1997
, “
OPPDIF: A Fortran Program for Computing Opposed-Flow Diffusion Flames
,” Sandia National Laboratories, Livermore, CA, Report No.
SAND96-8243
.10.2172/568983
24.
Kee
,
R. J.
,
Miller
,
J. A.
,
Evans
,
G. H.
, and
Dixon-Lewis
,
G.
,
1989
, “
A Computational Model of the Structure and Extinction of Strained, Opposed Flow, Premixed Methane-Air Flames
,”
Proc. Combust. Inst.
,
22
(
1
), pp.
1479
1493
.10.1016/S0082-0784(89)80158-4
25.
Kumar
,
K.
,
Sung
,
C.-J.
, and
Hui
,
X.
,
2011
, “
Laminar Flame Speeds and Extinction Limits of Conventional and Alternative Jet Fuels
,”
Fuel
,
90
(
3
), pp.
1004
1011
.10.1016/j.fuel.2010.11.022
26.
Abdel-Gayed
,
R.
, and
Bradley
,
D.
,
1985
, “
Criteria for Turbulent Propagation Limits of Premixed Flames
,”
Combust. Flame
,
62
(
1
), pp.
61
68
.10.1016/0010-2180(85)90093-8
You do not currently have access to this content.