Abstract

Land-based power units have to fulfill even more high levels of production and reliability. In harsh environments (desert and tropical installations, typically), the power unit ingests high amounts of dust that might deposit inside the compressor. In this paper, the analysis of a multistage compressor performance that operates under sandy and humid conditions has been assessed. The compressor units, which equips the Allison 250 C18 compressor, has been subjected to multiple runs under severe conditions of soil dust ingestion. The compressor has been operated according to subsequent runs, and at the end of each run, the performance curve was recorded; the performance losses, in terms of pressure ratio, have been measured during the operations. The characteristic curve of each run is representative of the level of contamination of the unit. Finally, the compressor has been washed, and the performance curve, in the recovered conditions, has been recorded. The results show the modification and the downward shift of the characteristic curves which lead to a gradual loss of the compressor performance. The curves realized after dust ingestion have been compared with the recovered curve after online washing. The measurement shows a promising recovery of the performances, even if the compressor flow path appears affected by localized deposits able to resist to the droplet removal action. Detailed photographic reports of the inlet guide vane (IGV) and the first compressor stages have been included in this analysis. After each run, the IGV, the rotor blade and stator vane of the first stage, and the hub and the shroud surfaces have been photographed. The pictures show the deposition patterns on the blades and the compressor surfaces. The comparison of the pictures of the internal surfaces, before and after the washing, highlights the parts that are more critical to clean and needy of attention during offline washing and overhaul.

References

1.
Suman
,
A.
,
Morini
,
M.
,
Aldi
,
N.
,
Casari
,
N.
,
Pinelli
,
M.
, and
Spina
,
P. R.
,
2017
, “
A Compressor Fouling Review Based on an Historical Survey of ASME Turbo Expo Papers
,”
ASME J. Turbomach.
,
139
(
4
), p.
041005
.10.1115/1.4035070
2.
Suman
,
A.
,
Casari
,
N.
,
Fabbri
,
E.
,
Pinelli
,
M.
,
Di Mare
,
L.
, and
Montomoli
,
F.
,
2019
, “
Gas Turbine Fouling Tests: Review, Critical Analysis, and Particle Impact Behavior Map
,”
ASME J. Eng. Gas Turbines Power
,
141
(
3
), p.
032601
.10.1115/1.4041282
3.
Suman
,
A.
,
Casari
,
N.
,
Fabbri
,
E.
,
di Mare
,
L.
,
Montomoli
,
F.
, and
Pinelli
,
M.
,
2019
, “
Generalization of Particle Impact Behavior in Gas Turbine Via Non-Dimensional Grouping
,”
Prog. Energy Combust. Sci.
,
74
, pp.
103
151
.10.1016/j.pecs.2019.05.001
4.
Mezheritsky
,
A.
, and
Sudarev
,
A. V.
, “
The Mechanism of Fouling and the Cleaning Technique in Application to Flow Parts of the Power Generation Plant Compressors
,”
ASME
Paper No. 90-GT-103.10.1115/90-GT-103
5.
Kurz
,
R.
, and
Brun
,
K.
,
2012
, “
Fouling Mechanisms in Axial Compressors
,”
ASME J. Eng. Gas Turbines Power
,
134
(
3
), p.
032401
.10.1115/1.4004403
6.
Suder
,
K. L.
,
Chima
,
R. V.
,
Strazisar
,
A. J.
, and
Roberts
,
W. B.
,
1995
, “
The Effect of Adding Roughness and Thickness to a Transonic Axial Compressor Rotor
,”
ASME J. Turbomach.
,
117
(
4
), pp.
491
505
.10.1115/1.2836561
7.
Bammert
,
K.
, and
Woelk
,
G.
,
1980
, “
The Influence of the Blading Surface Roughness on the Aerodynamic Behavior and Characteristic of an Axial Compressor
,”
J. Eng. Power
,
102
(
2
), pp.
283
287
.10.1115/1.3230249
8.
Zaba
,
T.
, and
Lombardi
,
P.
,
1984
, “
Experience In The Operation of Air Filters In Gas Turbine Installations
,“
ASME
Paper No. 84-GT-39.10.1115/84-GT-39
9.
Mund
,
F. C.
, and
Pilidis
,
P.
,
2006
, “
Gas Turbine Compressor Washing: Historical Developments, Trends and Main Design Parameters for Online Systems
,”
ASME J. Eng. Gas Turbines Power
,
128
(
2
), pp.
344
353
.10.1115/1.2132378
10.
Stalder
,
J.-P.
,
2001
, “
Gas Turbine Compressor Washing State of the Art: Field Experiences
,”
ASME J. Eng. Gas Turbines Power
,
123
(
2
), pp.
363
370
.10.1115/1.1361108
11.
Tarabrin
,
A.
,
Schurovsky
,
V.
,
Bodrov
,
A.
, and
Stalder
,
J.-P.
,
1998
, “
An Analysis of Axial Compressor Fouling and a Blade Cleaning Method
,”
ASME J. Turbomach.
,
120
(
2
), pp.
256
261
.10.1115/1.2841400
12.
Silingardi
,
A.
,
Astrua
,
P.
,
Piola
,
S.
, and
Ventrucci
,
I.
,
2013
, “
A Method for a Reliable Prediction of Heavy Duty Gas Turbines Performance Degradation Due to Compressor Aging Employing Field Test Data
,” Power Gen Europe, Messe, Wien, Austria, pp.
4
6
.
13.
Perullo
,
C. A.
,
Barron
,
J.
,
Grace
,
D.
,
Angello
,
L.
, and
Lieuwen
,
T.
,
2015
, “
Evaluation of Air Filtration Options for an Industrial Gas Turbine
,”
ASME
Paper No. GT2015-43736.10.1115/GT2015-43736
14.
Syverud
,
E.
,
Brekke
,
O.
, and
Bakken
,
L. E.
,
2005
, “
Axial Compressor Deterioration Caused by Saltwater Ingestion
,”
ASME J. Turbomach.
, 129(1), pp.
119
126
.10.1115/1.2219763
15.
Vulpio
,
A.
,
Suman
,
A.
,
Casari
,
N.
,
Pinelli
,
M.
,
Kurz
,
R.
, and
Brun
,
K.
,
2021
, “
Analysis of Time-Wise Compressor Fouling Phenomenon on a Multistage Test Compressor: Performance Losses and Particle Adhesion
,”
ASME J. Eng. Gas Turbines Power
, ePub. 10.1115/1.4049505
16.
Suman
,
A.
,
Vulpio
,
A.
,
Casari
,
N.
,
Pinelli
,
M.
,
Kurz
,
R.
, and
Brun
,
K.
,
2021
, “
Deposition Pattern Analysis on a Fouled Multistage Test Compressor
,”
ASME J. Eng. Gas Turbines Power
, ePub.10.1115/1.4049510
17.
Casari
,
N.
,
Pinelli
,
M.
,
Suman
,
A.
,
Vulpio
,
A.
,
Appleby
,
C.
, and
Kyte
,
S.
,
2020
, “
Assessment of the Washing Effectiveness of on-Purpose Designed Eco-Friendly Cleaner Against Soot Deposits
,”
J. Glob. Power Propuls. Soc.
, (4), pp. 253–263.10.33737/jgpps/130789
18.
Endo
,
Y.
,
Hasebe
,
S.
, and
Kousaka
,
Y.
,
1997
, “
Dispersion of Aggregates of Fine Powder by Acceleration in an Air Stream and Its Application to the Evaluation of Adhesion Between Particles
,”
Powder Technol
,
91
(
1
), pp.
25
30
.10.1016/S0032-5910(96)03229-9
19.
Calvert
,
G.
,
Ghadiri
,
M.
, and
Tweedie
,
R.
,
2009
, “
Aerodynamic Dispersion of Cohesive Powders: A Review of Understanding and Technology
,”
Adv. Powder Technol.
,
20
(
1
), pp.
4
16
.10.1016/j.apt.2008.09.001
20.
Munari
,
E.
,
D'Elia
,
G.
,
Morini
,
M.
,
Pinelli
,
M.
, and
Spina
,
P. R.
,
2019
, “
Stall and Surge in Wet Compression: Test Rig Development and Experimental Results
,”
ASME J. Eng. Gas Turbines Power
,
141
(
7
), p.
071008
.10.1115/1.4042474
21.
Detroit Diesel Allison, 1975, “
Allison Gas Turbine. Operation and Maintenance Manual. Turboshaft Models 250-c18, a, b & c
,” Detroit Diesel Allison, Division of General Motors Corporation, Indianapolis, IN.
22.
ISO/IEC GUIDE 98-3:2008 [JCGM/WG1/100], Uncertainty of Measurement – Part 3: Guide to the Expression of Uncertainty in Measurement (GUM:1995)
.
23.
JCGM 100:2008, Evaluation of Measurement Data - Guide to the Expression of Uncertainty in Measurement.
24.
Coleman
,
H. W.
, and
Steele
,
W. G.
, 1999,
Experimentation and Uncertainty Analysis for Engineers, 2nd ed., Wiley Interscience, Hoboken, NJ.
25.
Yu
,
K.
, and
Tafti
,
D.
,
2016
, “
Impact Model for Micrometer-Sized Sand Particles
,”
Powder Technol.
,
294
, pp.
11
21
.10.1016/j.powtec.2016.02.014
26.
Whitaker
,
S. M.
,
Peterson
,
B.
,
Miller
,
A. F.
, and
Bons
,
J. P.
,
2016
, “
The Effect of Particle Loading, Size, and Temperature on Deposition in a Vane Leading Edge Impingement Cooling Geometry
,”
ASME
Paper No. GT2016-57413.10.1115/GT2016-57413
27.
Reagle
,
C.
,
Delimont
,
J.
,
Ng
,
W.
,
Ekkad
,
S.
, and
Rajendran
,
V.
,
2013
, “
Measuring the Coefficient of Restitution of High Speed Microparticle Impacts Using a PTV and CFD Hybrid Technique
,”
Meas. Sci. Technol.
,
24
(
10
), p.
105303
.10.1088/0957-0233/24/10/105303
28.
Asplund
,
P.
,
1998
, “
Gas Turbine Cleaning Upgrade (Compressor Wash)
,”
Technical Research Centre of Finland, BALTICA IV: Plant Maintenance for Managing Life and Performance, Vol.
  1, Helsinki, Finland, Sept. 7–9, pp.
105
117
.
29.
Mund
,
F. C.
, and
Pilidis
,
P.
,
2004
, “
A Review of Gas Turbine Online Washing Systems
,”
ASME
Paper No. GT2004-53224.10.1115/GT2004-53224
30.
Syverud, E., Bakken, L. E., Langnes, K., and Bjørnås, F., 2003, “Gas Turbine Operation Offshore; On-Line Compressor Wash at Peak Load,”
ASME
Paper No. GT-2003-38071. 10.1115/GT2003-38071
31.
Munari
,
E.
,
Morini
,
M.
,
Pinelli
,
M.
,
Spina
,
P. R.
, and
Suman
,
A.
,
2016
, “
Experimental Investigation of Stall and Surge in a Multistage Compressor
,”
ASME J. Eng. Gas Turbines Power
, 139(2), p.
022605
.10.1115/1.4034239
32.
Gbadebo
,
S. A.
,
Hynes
,
T. P.
, and
Cumpsty
,
N. A.
,
2004
, “
Influence of Surface Roughness on Three-Dimensional Separation in Axial Compressors
,”
ASME J. Turbomach.
,
126
(
4
), pp.
455
463
.10.1115/1.1791281
33.
Morini
,
M.
,
Pinelli
,
M.
,
Spina
,
P. R.
, and
Venturini
,
M.
,
2010
, “
Computational Fluid Dynamics Simulation of Fouling on Axial Compressor Stages
,”
ASME J. Eng. Gas Turbines Power
,
132
(
7
), p.
072401
.10.1115/1.4000128
34.
Morini
,
M.
,
Pinelli
,
M.
,
Spina
,
P. R.
, and
Venturini
,
M.
,
2011
, “
Numerical Analysis of the Effects of Nonuniform Surface Roughness on Compressor Stage Performance
,”
ASME J. Eng. Gas Turbines Power
,
133
(
7
), p.
072402
.10.1115/1.4002350
35.
Aldi
,
N.
,
Morini
,
M.
,
Pinelli
,
M.
,
Spina
,
P. R.
,
Suman
,
A.
, and
Venturini
,
M.
,
2014
, “
Performance Evaluation of Nonuniformly Fouled Axial Compressor Stages by Means of Computational Fluid Dynamics Analyses
,”
ASME J. Turbomach.
,
136
(
2
), p.
021016
.10.1115/1.4025227
36.
Bettocchi
,
R.
,
Pinelli
,
M.
, and
Spina
,
P. R.
,
2003
, “
A Multi-Stage Compressor Test Facility: Uncertainty Analysis and Preliminary Test Results
,”
ASME J. Eng. Gas Turbines Power
, 127(1), pp.
170
177
.10.1115/1.1787516
37.
Aker
,
G.
, and
Saravanamuttoo
,
H. H.
,
1989
, “
Predicting Gas Turbine Performance Degradation Due to Compressor Fouling Using Computer Simulation Techniques
,”
ASME J. Eng. Gas Turbines Power
,
111
(
2
), pp.
343
350
.10.1115/1.3240259
38.
Melino
,
F.
,
Peretto
,
A.
, and
Spina
,
P. R.
,
2010
, “
Development and Validation of a Model for Axial Compressor Fouling Simulation
,”
ASME
Paper No. GT2010-22947.10.1115/GT2010-22947
39.
Diakunchak
,
I. S.
,
1991
, “
Performance Deterioration in Industrial Gas Turbines
,”
ASME J. Eng. Gas Turbines Power
, 114(2), pp.
161
168
.10.1115/1.2906565
40.
Harris
,
F.
,
1961
, “
A 7500-Shp Gas Turbine for Naval Boost Propulsion
,”
ASME
Paper No. 61-GTP-5.10.1115/61-GTP-5
41.
Meher-Homji
,
C. B.
,
Chaker
,
M.
, and
Bromley
,
A. F.
,
2009
, “
The Fouling of Axial Flow Compressors: Causes, Effects, Susceptibility, and Sensitivity
,”
ASME
Paper No. GT2009-59239.10.1115/GT2009-59239
42.
Fottner
,
L.
,
1989
, “
Review on Turbomachinery Blading Design Problems
,”
North Atlantic Treaty Organization Advisory Group for Aerospace Research and Development, Report No. AGARD-LS-167, pp. 1–13.
43.
Cleaver
,
J.
, and
Yates
,
B.
,
1973
, “
Mechanism of Detachment of Colloidal Particles From a Flat Substrate in a Turbulent Flow
,”
J. Colloid Interface Sci.
,
44
(
3
), pp.
464
474
.10.1016/0021-9797(73)90323-8
44.
Suman
,
A.
,
Vulpio
,
A.
,
Fortini
,
A.
,
Fabbri
,
E.
,
Casari
,
N.
,
Merlin
,
M.
, and
Pinelli
,
M.
,
2021
, “
Experimental Analysis of Micro-Sized Particles Time-Wise Adhesion: The Influence of Impact Velocity and Surface Roughness
,”
Int. J. Heat Mass Transfer
,
165
, Part A, p.
120632
.10.1016/j.ijheatmasstransfer.2020.120632
45.
Goodhand
,
M. N.
,
Walton
,
K.
,
Blunt
,
L.
,
Lung
,
H. W.
,
Miller
,
R. J.
, and
Marsden
,
R.
,
2016
, “
The Limitations of Using “ra” to Describe Surface Roughness
,”
ASME J. Turbomach.
,
138
(
10
), p.
101003
.10.1115/1.4032280
46.
Day
,
I.
,
Williams
,
J.
, and
Freeman
,
C.
,
2008
, “
Rain Ingestion in Axial Flow Compressors at Part Speed
,”
ASME J. Turbomach.
,
130
(
1
), p.
011024
.10.1115/1.2366511
47.
Suman
,
A.
,
Kurz
,
R.
,
Aldi
,
N.
,
Morini
,
M.
,
Brun
,
K.
,
Pinelli
,
M.
, and
Ruggero Spina
,
P.
,
2015
, “
Quantitative Computational Fluid Dynamics Analyses of Particle Deposition on a Transonic Axial Compressor Blade–Part I: Particle Zones Impact
,”
ASME J. Turbomach.
,
137
(
2
), p.
021009
.10.1115/1.4028295
48.
Suman
,
A.
,
Morini
,
M.
,
Kurz
,
R.
,
Aldi
,
N.
,
Brun
,
K.
,
Pinelli
,
M.
, and
Ruggero Spina
,
P.
,
2015
, “
Quantitative Computational Fluid Dynamic Analyses of Particle Deposition on a Transonic Axial Compressor Blade–Part II: Impact Kinematics and Particle Sticking Analysis
,”
ASME J. Turbomach.
,
137
(
2
), p.
021010
. 10.1115/1.4028296
49.
Suman
,
A.
,
Kurz
,
R.
,
Aldi
,
N.
,
Morini
,
M.
,
Brun
,
K.
,
Pinelli
,
M.
, and
Spina
,
P. R.
,
2016
, “
Quantitative Computational Fluid Dynamics Analyses of Particle Deposition on a Subsonic Axial Compressor Blade
,”
ASME J. Eng. Gas Turbines Power
,
138
(
1
), p.
012603
.10.1115/1.4031205
You do not currently have access to this content.