Abstract

The harnessing of mechanical power from supersonic flows is constrained by physical limitations and substantial aerodynamic losses. Bladeless axial turbines are a viable alternative to extract power in such harsh conditions without restricting the operating conditions. In this paper, we present a shape optimization of the wavy surface of bladeless turbines to maximize the power extraction, while minimizing convective heat flux and pressure losses. First, a baseline geometry was defined and an experimental campaign was carried out on the baseline wavy surface of the bladeless turbine at supersonic conditions. Pressure, heat flux, and skin friction measurements were compared with the Reynolds averaged Navier–Stokes results. Afterward, an evaluation routine which consisted of the geometry and grid generation, solving, and postprocessing was implemented within a multi-objective optimization routine to maximize the pressure force and minimize heat flux and pressure loss. Finally, a three-dimensional assessment in terms of power, heat load, and pressure drop was performed for the best performing geometry with the commercial solver cfd++ of Metacomp.

References

1.
Fernelius
,
M.
, and
Gorrell
,
S. E.
,
2020
, “
Mapping Efficiency of a Pulsing Flow Driven Turbine
,”
ASME J. Fluids Eng.
, 142(6), p. 061202.10.1115/1.4045993
2.
Liu
,
Z.
,
Braun
,
J.
, and
Paniagua
,
G.
,
2020
, “
Integration of a Transonic High-Pressure Turbine With a Rotating Detonation Combustor and a Diffuser
,”
Int. J. Turbo Jet-Engines
, ePub.10.1515/tjeng-2020-0016
3.
Paniagua
,
G.
,
Iorio
,
M. C.
,
Vinha
,
N.
, and
Sousa
,
J.
,
2014
, “
Design and Analysis of Pioneering High Supersonic Axial Turbines
,”
Int. J. Mech. Sci.
,
89
, pp.
65
77
.10.1016/j.ijmecsci.2014.08.014
4.
Inhestern
,
L. B.
,
Braun
,
J.
,
Paniagua
,
G.
, and
Serrano Cruz
,
J. R.
,
2020
, “
Design, Optimization, and Analysis of Supersonic Radial Turbines
,”
ASME J. Eng. Gas Turbines Power
,
142
(
3
), p.
031023
.10.1115/1.4044972
5.
Vinha
,
N.
,
Paniagua
,
G.
,
Sousa
,
J.
, and
Saracoglu
,
B. H.
,
2016
, “
Axial Bladeless Turbine Suitable for High Supersonic Flows
,”
J. Propuls. Power
,
32
(
4
), pp.
975
983
.10.2514/1.B35818
6.
Vinha
,
N.
,
Paniagua
,
G.
,
Sousa
,
J.
, and
Saracoglu
,
B. H.
,
2015
, “
Axial Fluid Machine and Method for Power Extraction
,” Report No.
EP 2 868 864 A1
.https://patentimages.storage.googleapis.com/5c/ab/9f/6bb9b60bc2ca9f/EP2868864A1.pdf
7.
Braun
,
J.
,
Paniagua
,
G.
,
Falempin
,
F.
, and
Naour
,
B. L.
,
2020
, “
Design and Experimental Assessment of Bladeless Turbines for Axial Inlet Supersonic Flows
,”
ASME J. Eng. Gas Turbines Power
,
142
(
4
), p. 041024.10.1115/1.4045359
8.
Tesla
,
N.
,
1913
, “
Fluid Propulsion
,” US Patent No.
US1061142A
.https://patents.google.com/patent/US1061142A/en
9.
Li
,
R.
,
Wang
,
H.
,
Yao
,
E.
,
Li
,
M.
, and
Nan
,
W.
,
2017
, “
Experimental Study on Bladeless Turbine Using Incompressible Working Medium
,”
Adv. Mech. Eng
,
9
(
1
), pp.
1
12
.10.1177/1687814016686935
10.
Renuke
,
A.
,
Vannoni
,
A.
,
Pascenti
,
M.
, and
Traverso
,
A.
,
2019
, “
Experimental and Numerical Investigation of Small-Scale Tesla Turbines
,”
ASME J. Eng. Gas Turbines Power
,
141
(
12
), p.
121011
.10.1115/1.4044999
11.
Song
,
J.
,
Gu
,
C.
, and
Li
,
X.
,
2017
, “
Performance Estimation of Tesla Turbine Applied in Small Scale Organic Rankine Cycle (ORC) System
,”
Appl. Therm. Eng.
,
110
, pp.
318
326
.10.1016/j.applthermaleng.2016.08.168
12.
A. L.
,
Neckel
,
M.
, and
Godinho
,
2015
, “
Influence of Geometry on the Efficiency of Convergent-Divergent Nozzles Applied to Tesla Turbines
,”
Exp. Therm. Fluid Sci.
,
62
, pp.
131
140
.10.1016/j.expthermflusci.2014.12.007
13.
Joly
,
M. M.
,
Verstraete
,
T.
, and
Paniagua
,
G.
,
2013
, “
Differential Evolution Based Soft Optimization to Attenuate Vane–Rotor Shock Interaction in High-Pressure Turbines
,”
Appl. Soft Comput.
,
13
(
4
), pp.
1882
1891
.10.1016/j.asoc.2012.12.005
14.
Moffat
,
R. J.
,
1998
, “
What's New in Convective Heat Transfer?
,”
Int. J. Heat Fluid Flow
,
19
(
2
), pp.
90
101
.10.1016/S0142-727X(97)10014-5
15.
Popp
,
O.
,
Smith
,
D. E.
,
Bubb
,
J. V.
,
Grabowski
III,
H. C.
,
Diller
,
T. E.
,
Schetz
,
J. A.
, and
Ng
,
W. F.
,
1999
, “
Steady and Unsteady Heat Transfer in a Transonic Film Cooled Turbine Cascade
,”
ASME
Paper No. 99-GT-259.10.1115/99-GT-259
16.
Saavedra
,
J.
,
Paniagua
,
G.
, and
Saracoglu
,
B. H.
,
2017
, “
Experimental Characterization of the Vane Heat Flux Under Pulsating Trailing-Edge Blowing
,”
ASME J. Turbomach.
,
139
(
6
), p.
061004
.10.1115/1.4035211
17.
Naughton
,
J.
, and
Brown
,
J.
,
1996
, “
Surface Interferometric Skin-Friction Measurement Technique
,”
AIAA
Paper No. 1996-2183.10.2514/6.1996-2183
18.
Brown
,
J. L.
, and
Naughton
,
J. W.
,
1999
, “
The Thin Oil Film Equation
,” NASA, Washington, DC, Report No.
TM-1999-208767
.https://ntrs.nasa.gov/citations/19990047906
19.
Husen
,
N. M.
,
Liu
,
T.
, and
Sullivan
,
J. P.
,
2018
, “
Luminescent Oil Film Flow Tagging Skin Friction Meter Applied to Faith Hill
,”
AIAA J.
,
56
(
10
), pp.
3875
3886
.10.2514/1.J057114
20.
Husen
,
N. M.
,
2017
, “
Skin Friction Measurements Using Luminescent Oil Films
,” Purdue University, West Lafayette, IN.https://docs.lib.purdue.edu/dissertations/AAI10277794/
21.
Husen
,
N. M.
,
Liu
,
T.
, and
Sullivan
,
J. P.
,
2018
, “
The Ratioed Image Film Thickness Meter
,”
Meas. Sci. Technol.
,
29
(
6
), p.
065301
.10.1088/1361-6501/aabd27
22.
Liu
,
T.
,
Burner
,
A. W.
,
Jones
,
T. W.
, and
Barrows
,
D. A.
,
2012
, “
Photogrammetric Techniques for Aerospace Applications
,”
Prog. Aerosp. Sci.
,
54
, pp.
1
58
.10.1016/j.paerosci.2012.03.002
23.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.10.1016/0894-1777(88)90043-X
24.
Bhatnagar
,
L.
, and
Paniagua
,
G.
,
2019
, “
Development of High Speed and High Temperature Atomic Layer Thermopiles
,”
ASME
Paper No. GT2019-91012.10.1115/GT2019-91012
25.
Verstraete
,
T.
,
Amaral
,
S.
,
Van Den Braembussche
,
R.
, and
Arts
,
T.
,
2010
, “
Design and Optimization of the Internal Cooling Channels of a High Pressure Turbine blade—Part II: Optimization
,”
ASME J. Turbomach.
,
132
(
2
), p.
021014
.10.1115/1.3104615
26.
Deb
,
K.
,
Pratap
,
A.
,
Agarwal
,
S.
, and
Meyarivan
,
T.
,
2002
, “
A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II
,”
IEEE Trans. Evol. Comput.
,
6
(
2
), pp.
182
197
.10.1109/4235.996017
27.
Montgomery
,
D. C.
,
2017
,
Design and Analysis of Experiments
, 9th ed.,
Wiley
, Hoboken, NJ.
You do not currently have access to this content.