Abstract

Pressure gain combustion is a promising concept to substantially increase the thermal efficiency of gas turbines. One possible implementation that has been frequently investigated is pulse detonation combustors (PDCs), as they permit stable and reliable operation. At the same time, the need for part-load operation and low NOx emissions requires combustion concepts in the lean regime. However, realizing lean combustion is still very challenging in PDCs since the deflagration to detonation transition (DDT) is very sensitive to the reactant composition. This work investigates an approach to realize lean combustion in PDC by applying fuel stratification experimentally. The scope is to find the necessary increase of fuel concentration inside the predetonation chamber to provide reliable DDT with respect to the overall equivalence ratio. Emission measurements in the exhaust of the PDC allow for a quantification of the NOx emissions as a function of the injected fuel profile. A valveless PDC test rig is used, which contains a shock focusing geometry for detonation initiation and is ignited by a spark plug close to the upstream end wall. The subsequent expansion of the burned gas and interaction of the flame front with turbulence leads to the formation of a leading shock inside the predetonation chamber, which is then focused inside a converging-diverging geometry. The successful initiation of a detonation wave by shock focusing is very sensitive to the pressure ratio across the leading shock, which can be influenced by initial pressure, reactant composition and flow velocity. Results reveal that fuel stratification allows for reliable detonation initiation at a global equivalence ratio of φglob=0.65, whereas repeatable successful operation with nonstratified fuel injection is limited to φglob0.85.

References

1.
Roy
,
G. D.
,
Frolov
,
S. M.
,
Borisov
,
A. A.
, and
Netzer
,
D. W.
,
2004
, “
Pulse Detonation Propulsion: Challenges, Current Status, and Future Perspective
,”
Prog. Energy Combust. Sci.
,
30
(
6
), pp.
545
672
.10.1016/j.pecs.2004.05.001
2.
Kailasanath
,
K.
,
2017
, “
Recent Developments in the Research on Rotating-Detonation-Wave Engines
,”
AIAA
Paper No. 2017-0784.10.2514/6.2017-0784
3.
Bluemner
,
R.
,
Bohon
,
M. D.
,
Paschereit
,
C. O.
, and
Gutmark
,
E. J.
,
2018
, “
Single and Counter-Rotating Wave Modes in an RDC
,”
AIAA
Paper No. 2018-1608.10.2514/6.2018-1608
4.
Silvestrini
,
M.
,
Genova
,
B.
,
Parisi
,
G.
, and
Trujillo
,
F. L.
,
2008
, “
Flame Acceleration and DDT Run-Up Distance for Smooth and Obstacles Filled Tubes
,”
J. Loss Prev. Process Ind.
,
21
(
5
), pp.
555
562
.10.1016/j.jlp.2008.05.002
5.
Völzke
,
F. E.
,
Yücel
,
F. C.
,
Gray
,
J. A. T.
,
Hanraths
,
N.
,
Paschereit
,
C. O.
, and
Moeck
,
J. P.
,
2019
, “
The Influence of the Initial Temperature on DDT Characteristics in a Valveless PDC
,”
Active Flow and Combustion Control 2018
,
Springer
,
Berlin
, pp.
185
196
.10.1007/978-3-319-98177-2_12
6.
Dorofeev
,
S.
,
Sidorov
,
V.
,
Kuznetsov
,
M.
,
Matsukov
,
I.
, and
Alekseev
,
V.
,
2000
, “
Effect of Scale on the Onset of Detonations
,”
Shock Waves
,
10
(
2
), pp.
137
149
.10.1007/s001930050187
7.
Schauer
,
F. R.
,
Miser
,
C. L.
,
Tucker
,
K. C.
,
Bradley
,
R. R.
,
Hoke
,
J. J.
,
Tucker
,
C.
,
Bradley
,
R. R.
, and
Hoke
,
J. J.
,
2005
, “
Detonation Initiation of Hydrocarbon-Air Mixtures in a Pulsed Detonation Engine
,”
AIAA
Paper No.
2005
1343
.10.2514/6.2005-1343
8.
Frolov
,
S.
, and
Aksenov
,
V.
,
2009
, “
Initiation of Gas Detonation in a Tube With a Shaped Obstacle
,”
Dokl. Phys. Chem.
,
427
,
pp.
129
132
.10.1134/S0012501609070045
9.
Gray
,
J. A. T.
,
Lemke
,
M.
,
Reiss
,
J.
,
Paschereit
,
C. O.
,
Sesterhenn
,
J.
, and
Moeck
,
J. P.
,
2017
, “
A Compact Shock-Focusing Geometry for Detonation Initiation: Experiments and Adjoint-Based Variational Data Assimilation
,”
Combust. Flame
,
183
, pp.
144
156
.10.1016/j.combustflame.2017.03.014
10.
Brophy
,
C.
, and
Hanson
,
R.
,
2006
, “
Fuel Distribution Effects on Pulse Detonation Engine Operation and Performance
,”
J. Propul. Power
,
22
(
6
), pp.
1155
1161
.10.2514/1.18713
11.
Yungster
,
S.
,
Radhakrishnan
,
K.
, and
Breisacher
,
K.
,
2006
, “
Computational Study of NOx Formation in Hydrogen-Fuelled Pulse Detonation Engines
,”
Combust. Theory Modell.
,
10
(
6
), pp.
981
1002
.10.1080/13647830600876629
12.
Schauer
,
F.
,
Bradley
,
R.
,
Katta
,
V.
, and
Hoke
,
J.
,
2009
, “
Emissions in a Pulsed Detonation Engine
,”
AIAA
Paper No. 2009-505.10.2514/6.2009-505
13.
Hanraths
,
N.
,
Tolkmitt
,
F.
,
Berndt
,
P.
,
Djordjevic
,
N.
, and
Berndt
,
P.
,
2018
, “
Numerical Study on NOx Reduction in Pulse Detonation Combustion by Using Steam Injection Decoupled From Detonation Development
,”
ASME J. Eng. Gas Turbines Power
,
140
(
12
), p.
121008
.10.1115/1.4040867
14.
Djordjevic
,
N.
,
Hanraths
,
N.
,
Gray
,
J. A. T.
,
Berndt
,
P.
, and
Moeck
,
J.
,
2018
, “
Numerical Study on the Reduction of NOx Emissions From Pulse Detonation Combustion
,”
ASME J. Eng. Gas Turbines Power
,
140
(
4
), p.
041504
.10.1115/1.4038041
15.
Lee
,
J. H. S.
,
2008
,
The Detonation Phenomenon
,
Cambridge University Press
,
Cambridge, UK
.
16.
Bengoechea
,
S.
,
Gray
,
J. A. T.
,
Reiss
,
J.
,
Moeck
,
J. P.
,
Paschereit
,
C. O.
, and
Sesterhenn
,
J.
,
2018
, “
Detonation Initiation in Pipes With a Single Obstacle for Mixtures of Hydrogen and Oxygen-Enriched Air
,”
Combust. Flame
,
198
, pp.
290
304
.10.1016/j.combustflame.2018.09.017
17.
Hanraths
,
N.
,
Bohon
,
M. D.
,
Paschereit
,
C. O.
, and
Djordjevic
,
N.
,
2019
, “
Gas Sampling Techniques for NOx Emissions in Pulse Detonation Combustion
,”
AIAA
Paper No. 2019-1013.10.2514/6.2019-1013
18.
Garg
,
S.
, and
Castaldini
,
C.
,
1989
, “
Derivation of Oxygen Correction Factors for Oxygen-Enriched Incinerators
,”
JAPCA
,
39
(
11
), pp.
1462
1465
.10.1080/08940630.1989.10466641
19.
Lee
,
J.
,
Knystautas
,
R.
, and
Yoshikawa
,
N.
,
1980
, “
Photochemical Initiation of Gaseous Detonations
,”
Gasdynamics of Explosions and Reactive Systems
,
Elsevier
,
Amsterdam, The Netherlands
, pp.
971
982
.
20.
Browne
,
S.
,
Ziegler
,
J.
, and
Shepherd
,
J.
,
2015
, “
Numerical Solution Methods for Shock and Detonation Jump Conditions
,” GALCIT, California Institute of Technology, Pasadena, CA, Report No.
FM2006.006
. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.181.1150&rep=rep1&type=pdf
21.
Goodwin
,
D. G.
,
Speth
,
R. L.
,
Moffat
,
H. K.
, and
Weber
,
B. W.
,
2018
, “
Cantera: An Object-Oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes
,” Cantera, accessed Oct. 20, 2020, https://www.cantera.org
22.
Burke
,
M. P.
,
Chaos
,
M.
,
Ju
,
Y.
,
Dryer
,
F. L.
, and
Klippenstein
,
S. J.
,
2012
, “
Comprehensive H2/O2 Kinetic Model for High-Pressure Combustion
,”
Int. J. Chem. Kinet.
,
44
(
7
), pp.
444
474
.10.1002/kin.20603
23.
Hewson
,
J.
, and
Bollig
,
M.
,
1996
, “
Reduced Mechanisms for NOx Emissions From Hydrocarbon Diffusion Flames
,”
Symp. Combust.
,
26
(
2
), pp.
2171
2179
.10.1016/S0082-0784(96)80043-9
24.
Warnatz
,
J.
,
Maas
,
U.
, and
Dibble
,
R. W.
,
2006
,
Combustion
(Formation of Nitric Oxides), 4th ed.,
Springer
,
Berlin
, pp.
259
262
.
You do not currently have access to this content.