Abstract

Large eddy simulation is used to investigate the flashback mechanism caused by the combustion-induced vortex breakdown (CIVB) in a high-pressure lean-burn annular combustor with lean direct injection of kerosene. A single sector of the geometry, including a central pilot flame surrounded by a main flame, is simulated at takeoff conditions. A previously developed flamelet-based approach is used to model turbulence–combustion interactions due to its relatively low cost, allowing to simulate a sufficiently long time window. In stable operations, the flame stabilizes in an M-shape configuration and a periodic movement of the pilot jet, with the corresponding formation of a small recirculation bubble, is observed. Flashback is then observed, with the flame accelerating upstream toward the injector as already described in other studies. This large eddy simulation (LES), however, reveals a precursor partial blow-out of the main flame induced by a cluster of vortices appearing in the outer recirculation region. The combined effect of vortices and sudden quenching alters the mixing level close to the injector, causing first the main, then the pilot flame, to accelerate upstream, and initiate the CIVB cycle before the quenched region can re-ignite. Main and pilot flames partly extinguish as they cross their respective fuel injection point, and re-ignition follows due to the remnants of the reaction in the pilot stream. The process is investigated in detail, discussing the causes of CIVB-driven flashback in realistic lean-burn systems.

References

1.
Huang
,
Y.
, and
Yang
,
V.
,
2009
, “
Dynamics and Stability of Lean-Premixed Swirl-Stabilized Combustion
,”
Prog. Energy Combust. Sci.
,
35
(
4
), pp.
293
364
.10.1016/j.pecs.2009.01.002
2.
Rayleigh
,
J. W. S.
,
1878
, “
The Explanation of Certain Acoustic Phenomena
,”
Nature
,
18
(
455
), pp.
319
321
.10.1038/018319a0
3.
Nicoud
,
F.
, and
Poinsot
,
T.
,
2005
, “
Thermoacoustic Instabilities: Should the Rayleigh Criterion Be Extended to Include Entropy Changes
,”
Combust. Flame
,
142
(
1–2
), pp.
153
159
.10.1016/j.combustflame.2005.02.013
4.
Syred
,
N.
,
2006
, “
A Review of Oscillation Mechanisms and the Role of the Precessing Vortex Core (PVC) in Swirl Combustion Systems
,”
Prog. Energy Combust. Sci.
,
32
(
2
), pp.
93
161
.10.1016/j.pecs.2005.10.002
5.
Steinberg
,
A. M.
,
Arndt
,
C. M.
, and
Meier
,
W.
,
2013
, “
Parametric Study of Vortex Structures and Their Dynamics in Swirl-Stabilized Combustion
,”
Proc. Combust. Inst.
,
34
(
2
), pp.
3117
3125
.10.1016/j.proci.2012.05.015
6.
Kraus
,
C.
,
Harth
,
S.
, and
Bockhorn
,
H.
,
2016
, “
Experimental Investigation of Combustion Instabilities in Lean Swirl-Stabilized Partially-Premixed Flames in Single- and Multiple-Burner Setup
,”
Int. J. Spray Combust. Dyn.
,
8
(
1
), pp.
4
26
.10.1177/1756827715627064
7.
Lieuwen
,
T.
, and
Yang
,
V.
,
2005
,
Combustion Instabilities in Gas Turbine Engines: Operational Experience, Fundamental Mechanisms and Modeling
(Progress in Astronautics and Aeronautics, Vol.
210
),
AIAA
, Reston, VA.10.2514/4.866807
8.
Ducruix
,
S.
,
Schuller
,
T.
,
Durox
,
D.
, and
Candel
,
S.
,
2003
, “
Combustion Dynamics and Instabilities: Elementary Coupling and Driving Mechanisms
,”
J. Propul. Power
,
19
(
5
), pp.
722
734
.10.2514/2.6182
9.
Driscoll
,
J. F.
, and
Temme
,
J.
,
2011
, “Role of Swirl in Flame Stabilization,”
AIAA
Paper No. 2011-108.10.2514/6.2011-108
10.
O'Connor
,
J.
, and
Lieuwen
,
T.
,
2011
, “
Disturbance Field Characteristics of a Transversely Excited Burner
,”
Combust. Sci. Technol.
,
183
(
5
), pp.
427
443
.10.1080/00102202.2010.529478
11.
Duwig
,
C.
, and
Fuchs
,
L.
,
2005
, “
Study of Flame Stabilization in a Swirling Combustor Using a New Flamelet Formulation
,”
Combust. Sci. Technol.
,
177
(
8
), pp.
1485
1510
.10.1080/00102200590956669
12.
Langella
,
I.
,
Heinze
,
J.
,
Behrendt
,
T.
,
Voigt
,
L.
,
Swaminathan
,
N.
, and
Zedda
,
M.
,
2020
, “
Turbulent Flame Shape Switching at Conditions Relevant for Gas Turbines
,”
ASME J. Eng. Gas Turbines Power
,
142
(
1
), p.
011026
.10.1115/1.4044944
13.
Boxx
,
I.
,
Arndt
,
C. M.
,
Carter
,
C. D.
, and
Meier
,
W.
,
2012
, “
Dynamics and Stability of Lean-Premixed Swirl-Stabilized Combustion
,”
Exp. Fluids
,
52
(
3
), pp.
555
567
.10.1007/s00348-010-1022-x
14.
Frederick
,
M.
,
Manoharan
,
K.
,
Dudash
,
J.
,
Brubaker
,
B.
,
Hemchandra
,
S.
, and
O'Connor
,
J.
,
2018
, “
Impact of Precessing Vortex Core Dynamics on Shear Layer Response in a Swirling Jet
,”
ASME J. Eng. Gas Turbines Power
,
140
(
6
), p.
061503
.10.1115/1.4038324
15.
Renaud
,
A.
,
Ducruix
,
S.
, and
Zimmer
,
L.
,
2019
, “
Experimental Study of the Precessing Vortex Core Impact on the Liquid Fuel Spray in a Gas Turbine Model Combustor
,”
ASME J. Eng. Gas Turbines Power
,
141
(
11
), p.
111022
.10.1115/1.4044998
16.
Zhang
,
R.
,
Boxx
,
I.
,
Meier
,
W.
, and
Slabaugh
,
C. D.
,
2019
, “
Coupled Interactions of a Helical Precessing Vortex Core and the Central Recirculation Bubble in a Swirl Flame at Elevated Power Density
,”
Combust. Flame
,
202
, pp.
119
131
.10.1016/j.combustflame.2018.12.035
17.
Tangermann
,
E.
, and
Pfitzner
,
M.
,
2009
, “
Evaluation of Combustion Models for Combustion-Induced Vortex Breakdown
,”
J. Turbul.
,
10
, pp.
1
21
.10.1080/14685240802592423
18.
Fritz
,
J.
,
Kröner
,
M.
, and
Sattelmayer
,
T.
,
2004
, “
Flashback in a Swirl Burner With Cylindrical Premixing Zone
,”
ASME J. Eng. Gas Turbines Power
,
126
(
2
), pp.
276
283
.10.1115/1.1473155
19.
Kröner
,
M.
,
Fritz
,
J.
, and
Sattelmayer
,
T.
,
2003
, “
Flashback Limits for Combustion Induced Vortex Breakdown in a Swirl Burner
,”
ASME J. Eng. Gas Turbines Power
,
125
(
3
), pp.
693
700
.10.1115/1.1582498
20.
Kiesewetter
,
F.
,
Konle
,
M.
, and
Sattelmayer
,
T.
,
2007
, “
Analysis of Combustion Induced Vortex Breakdown Driven Flame Flashback in a Premix Burner With Cylindrical Mixing Zone
,”
ASME J. Eng. Gas Turbines Power
,
129
(
4
), pp.
929
936
.10.1115/1.2747259
21.
Kiesewetter
,
F.
,
Konle
,
M.
, and
Sattelmayer
,
T.
,
2009
, “
Interaction of Heat Release and Vortex Breakdown During Flame Flashback Driven by Combustion Induced Vortex Breakdown
,”
Exp. Fluids
,
47
(
4–5
), pp.
627
635
.10.1007/s00348-009-0679-5
22.
Kröner
,
M.
,
Sattelmayer
,
T.
,
Fritz
,
J.
,
Kiesewetter
,
F.
, and
Hirsch
,
C.
,
2007
, “
Flame Propagation in Swirling Flows-Effect of Local Extinction on the Combustion Induced Vortex Breakdown
,”
Combust. Sci. Technol.
,
179
(
7
), pp.
1385
1416
.10.1080/00102200601149902
23.
Tangermann
,
E.
,
Pfitzner
,
M.
,
Konle
,
M.
, and
Sattelmayer
,
T.
,
2010
, “
Large-Eddy Simulation and Experimental Observation of Combustion-Induced Vortex Breakdown
,”
Combust. Sci. Technol.
,
182
(
4–6
), pp.
505
516
.10.1080/00102200903463126
24.
Wankhede
,
M. J.
,
Bressloff
,
N. W.
,
Keane
,
A. J.
,
Caracciolo
,
L.
, and
Zedda
,
M.
,
2010
, “
An Analysis of Unstable Flow Dynamics and Flashback Mechanism Inside a Swirl-Stabilised Lean Burn Combustor
,”
ASME
Paper No. GT2010-22253. 10.1115/GT2010-22253
25.
Kohse-Höinghaus
,
K.
,
Barlow
,
R. S.
,
Aldén
,
M.
, and
Wolfrum
,
J.
,
2005
, “
Combustion at the Focus: Laser Diagnostics and Control
,”
Proc. Combust. Inst.
,
30
(
1
), pp.
89
123
.10.1016/j.proci.2004.08.274
26.
Ebi
,
D.
, and
Clemens
,
N. T.
,
2016
, “
Experimental Investigation of Upstream Flame Propagation During Boundary Layer Flashback of Swirl Flames
,”
Combust. Flame
,
168
, pp.
39
52
.10.1016/j.combustflame.2016.03.027
27.
Semlitsch
,
B.
,
Hynes
,
T.
,
Langella
,
I.
,
Swaminathan
,
N.
, and
Dowling
,
A. P.
,
2019
, “
Entropy and Vorticity Wave Generation in Realistic Gas Turbine Combustors
,”
J. Propul. Power
,
35
(
4
), pp.
839
849
.10.2514/1.B37463
28.
Chen
,
Z.
,
Ruan
,
S.
, and
Swaminathan
,
N.
,
2017
, “
Large Eddy Simulation of Flame Edge Evolution in a Spark-Ignited Methane-Air Jet
,”
Proc. Combust. Inst.
,
36
(
2
), pp.
1645
1652
.10.1016/j.proci.2016.06.023
29.
Langella
,
I.
,
Chen
,
Z. X.
,
Swaminathan
,
N.
, and
Sadasivuni
,
S. K.
,
2018
, “
Large-Eddy Simulation of Reacting Flows in Industrial Gas Turbine Combustor
,”
J. Propul. Power
,
34
(
5
), pp.
1269
1284
.10.2514/1.B36842
30.
Driscoll
,
J. F.
,
Chen
,
J. H.
,
Skiba
,
A. W.
,
Carter
,
C. D.
,
Hawkes
,
E. R.
, and
Wang
,
H.
,
2020
, “
Premixed Flames Subjected to Extreme Turbulence: Some Questions and Recent Answers
,”
Prog. Energy Combust. Sci.
,
76
, pp.
1
35
.10.1016/j.pecs.2019.100802
31.
Dunn
,
M. J.
,
Masri
,
A. R.
,
Bilger
,
R. W.
, and
Barlow
,
R. S.
,
2010
, “
Finite Rate Chemistry Effects in Highly Sheared Turbulent Premixed Flames
,”
Flow, Turbul. Combust.
,
85
(
3–4
), pp.
621
648
.10.1007/s10494-010-9280-5
32.
Poludnenko
,
A. Y.
, and
Oran
,
E. S.
,
2010
, “
The Interaction of High-Speed Turbulence With Flames: Global Properties and Internal Flame Structure
,”
Combust. Flame
,
157
(
5
), pp.
995
1011
.10.1016/j.combustflame.2009.11.018
33.
Poinsot
,
T.
,
Veynante
,
D.
, and
Candel
,
S.
,
1991
, “
Quenching Processes and Premixed Turbulent Combustion Diagrams
,”
J. Fluid Mech.
,
228
, pp.
561
606
.10.1017/S0022112091002823
34.
Roberts
,
W. L.
,
Driscoll
,
J. F.
,
Drake
,
M. C.
, and
Goss
,
L. P.
,
1993
, “
Images of the Quenching of a Flame by a Vortex—To Quantify Regimes of Turbulent Combustion
,”
Combust. Flame
,
94
(
1–2
), pp.
58
69
.10.1016/0010-2180(93)90019-Y
35.
Bilger
,
R. W.
,
Stårner
,
S. H.
, and
Kee
,
R. J.
,
1990
, “
On Reduced Mechanism for Methane-Air Combustion in Nonpremixed Flames
,”
Combust. Flame
,
80
(
2
), pp.
135
149
.10.1016/0010-2180(90)90122-8
36.
Giusti
,
A.
,
Mastorakos
,
E.
,
Hassa
,
C.
,
Heinze
,
J.
,
Magens
,
E.
, and
Zedda
,
M.
,
2018
, “
Investigation of Flame Structure and Soot Formation in a Single Sector Model Combustor Using Experiments and Numerical Simulations Based on the Large Eddy Simulation/Conditional Moment Closure Approach
,”
ASME J. Eng. Gas Turbines Power
,
140
(
6
), p.
061506
.10.1115/1.4038025
37.
Chen
,
Z. X.
,
Langella
,
I.
, and
Swaminathan
,
N.
,
2019
, “
The Role of CFD in Modern Jet Engine Combustor Design
,”
Environmental Impact of Aviation and Sustainable Solutions
,
R. K.
Agarwal
, ed.,
IntechOpen
,
London, UK
.
38.
Chen
,
Z. X.
,
Langella
,
I.
,
Barlow
,
R. S.
, and
Swaminathan
,
N.
,
2020
, “
Prediction of Local Extinctions in Piloted Jet Flames With Inhomogeneous Inlets Using Unstrained Flamelets
,”
Combust. Flame
,
212
, pp.
415
432
.10.1016/j.combustflame.2019.11.007
39.
Pitsch
,
H.
,
2006
, “
Large-Eddy Simulation of Turbulent Combustion
,”
Annu. Rev. Fluid Mech.
,
38
(
1
), pp.
453
482
.10.1146/annurev.fluid.38.050304.092133
40.
Pera
,
C.
,
Réveillon
,
J.
,
Vervisch
,
L.
, and
Domingo
,
P.
,
2006
, “
Modeling Subgrid Scale Mixture Fraction Variance in LES of Evaporating Spray
,”
Combust. Flame
,
146
(
4
), pp.
635
648
.10.1016/j.combustflame.2006.07.003
41.
Chrigui
,
M.
,
Gounder
,
J.
,
Sadiki
,
A.
,
Masri
,
A. R.
, and
Janicka
,
J.
,
2012
, “
Partially Premixed Reacting Acetone Spray Using LES and FGM Tabulated Chemistry
,”
Combust. Flame
,
159
(
8
), pp.
2718
2741
.10.1016/j.combustflame.2012.03.009
42.
Nilsson
,
T.
,
Langella
,
I.
,
Doan
,
N. A. K.
,
Swaminathan
,
N.
,
Yu
,
R.
, and
Bai
,
X.-S.
,
2019
, “
A Priori Analysis of Sub-Grid Variance of a Reactive Scalar Using DNS Data of High Ka Flames
,”
Combust. Theory Modell.
,
23
(
5
), pp.
885
906
.10.1080/13647830.2019.1600033
43.
Dunstan
,
T. D.
,
Minamoto
,
Y.
,
Chakraborty
,
N.
, and
Swaminathan
,
N.
,
2013
, “
Scalar Dissipation Rate Modelling for Large Eddy Simulation of Turbulent Premixed Flames
,”
Proc. Combust. Inst.
,
34
(
1
), pp.
1193
1201
.10.1016/j.proci.2012.06.143
44.
Langella
,
I.
,
Doan
,
N. A. K.
,
Swaminathan
,
N.
, and
Pope
,
S. B.
,
2018
, “
Study of Subgrid-Scale Velocity Models for Reacting and Nonreacting Flows
,”
Phys. Rev. Fluids
,
3
, p.
054602
.10.1103/PhysRevFluids.3.054602
45.
Gepperth
,
S.
,
Koch
,
R.
, and
Bauer
,
H.-J.
,
2013
, “
Analysis and Comparison of Primary Droplet Characteristics in the Near Field of a Prefilming Airblast Atomizer
,”
ASME
Paper No. GT2013-94033. 10.1115/GT2013-94033
46.
Miller
,
R. S.
,
Harstad
,
K.
, and
Bellan
,
J.
,
1998
, “
Evaluation of Equilibrium and Non-Equilibrium Evaporation Models for Many-Droplet Gas-Liquid Flow Simulations
,”
Int. J. Multiphase Flow
,
24
(
6
), pp.
1025
1055
.10.1016/S0301-9322(98)00028-7
47.
de Oliveira
,
P. M.
,
Sitte
,
M. P.
,
Zedda
,
M.
,
Giusti
,
A.
, and
Mastorakos
,
E.
,
2021
, “
Low-Order Modeling of High-Altitude Relight of Jet Engine Combustors
,”
Int. J. Spray Combust. Dyn.
,
13
(
1–2
), pp.
20
34
.10.1177/17568277211021322
48.
Anand
,
M. S.
,
Eggels
,
R.
,
Staufer
,
M.
,
Zedda
,
M.
, and
Zhu
,
J.
,
2013
, “
An Advanced Unstructured-Grid Finite Volume Design System for Gas Turbine Combustion Analysis
,”
ASME
Paper No. GTINDIA2013-3537. 10.1115/GTINDIA2013-3537
49.
Dagaut
,
P.
, and
Cathonnet
,
M.
,
2006
, “
The Ignition, Oxidation, and Combustion of Kerosene: A Review of Experimental and Kinetic Modeling
,”
Prog. Energy Combust. Sci.
,
32
(
1
), pp.
48
92
.10.1016/j.pecs.2005.10.003
50.
Boileau
,
M.
,
Staffelbach
,
G.
,
Cuenot
,
B.
,
Poinsot
,
T.
, and
Bérat
,
C.
,
2008
, “
LES of an Ignition Sequence in a Gas Turbine Engine
,”
Combust. Flame
,
154
(
1–2
), pp.
2
22
.10.1016/j.combustflame.2008.02.006
51.
Wolf
,
P.
,
Staffelbach
,
G.
,
Gicquel
,
L. Y.
,
Müller
,
J.-D.
, and
Poinsot
,
T.
,
2012
, “
Acoustic and Large Eddy Simulation Studies of Azimuthal Modes in Annular Combustion Chambers
,”
Combust. Flame
,
159
(
11
), pp.
3398
3413
.10.1016/j.combustflame.2012.06.016
52.
Bauerheim
,
M.
,
Jaravel
,
T.
,
Esclapez
,
L.
,
Riber
,
E.
,
Gicquel
,
L. Y. M.
,
Cuenot
,
B.
,
Cazalens
,
M.
,
Bourgois
,
S.
, and
Rullaud
,
M.
,
2015
, “
Multiphase Flow Large-Eddy Simulation Study of the Fuel Split Effects on Combustion Instabilities in an Ultra-Low-NOx Annular Combustor
,”
ASME J. Eng. Gas Turbines Power
,
138
(
6
), p.
061503
.10.1115/1.4031871
53.
Nilsson
,
T.
,
Yu
,
R.
,
Doan
,
N. A. K.
,
Langella
,
I.
,
Swaminathan
,
N.
, and
Bai
,
X.-S.
,
2019
, “
Filtered Reaction Rate Modelling in Moderate and High Karlovitz Number Flames: An a Priori Analysis
,”
Flow, Turbul. Combust.
,
103
(
3
), pp.
643
665
.10.1007/s10494-019-00038-8
54.
Pfitzner
,
M.
,
2021
, “
A New Analytic Pdf for Simulations of Premixed Turbulent Combustion
,”
Flow, Turbul. Combust.
,
106
(
4
), pp.
1213
1239
.10.1007/s10494-020-00137-x
55.
Soli
,
A.
,
Langella
,
I.
, and
Chen
,
Z. X.
,
2022
, “
Analysis of Flame Front Breaks Appearing in LES of Inhomogeneous Jet Flames Using Flamelets
,”
Flow, Turbul. Combust.
,
108
(
4
), pp.
1159
1190
.10.1007/s10494-021-00306-6
You do not currently have access to this content.