The local heat transfer and pressure drop characteristics of developing turbulent flows in a rectangular duct with an abrupt-contraction entrance and repeated square-rib pairs on the two opposite walls have been investigated experimentally. Both entrance-region and periodic-fully-developed-region results were obtained. Laser holographic interferometry was employed in the local and average heat transfer measurements. The Reynolds number was varied from 5.0 × 103 to 5.0 × 104; the rib pitch-to-height ratios were 10, 15, and 20; and the rib height-to-duct height ratio was kept at a value of 0.13. The results allowed the entry length to be determined and the regions susceptible to hot spots to be located. Semi-empirical heat transfer and friction correlations for the periodic fully developed region were developed. Moreover, performance comparisons between the ribbed and smooth ducts were made under two types of constraint, namely equal mass flow rate and equal pumping power. Finally, the effect of thermal entry length on the length mean Nusselt number was also investigated. The results showed that the length mean Nusselt number ratio was a function of only the duct length and independent of PR and Re, and could be further correlated by an equation of the form Num/Nup = 1 + 1.844/(X/De).

This content is only available via PDF.
You do not currently have access to this content.