A high order approximation, the SKN method—a mnemonic for synthetic kernel—is proposed for solving radiative transfer problems in participating medium. The method relies on approximating the integral transfer kernel by a sum of exponential kernels. The radiative integral equation is then reducible to a set of coupled second-order differential equations. The method is tested for one-dimensional plane-parallel participating medium. Three quadrature sets are proposed for the method, and the convergence of the method with the proposed sets is explored. The SKN solutions are compared with the exact, PN, and SN solutions. The SK1 and SK2 approximations using quadrature Set-2 possess the capability of solving radiative transfer problems in optically thin systems.

1.
Modest, M. F., 1993, Radiative Heat Transfer, McGraw Hill Inc.
2.
Lewis, E. E., and Miller, W. F., 1984, Computational Methods of Neutron Transport, John Wiley & Sons, Inc.
3.
Spinrad
,
B. I.
, and
Sterbentz
,
J. S.
,
1985
, “
Approximations to Neutron Transport Problems in Complex Geometries: I
,”
Nucl. Sci. Eng.
,
90
, pp.
431
440
.
4.
Altac¸
,
Z.
, and
Spinrad
,
B. I.
,
1990
, “
The SKN Method I: A High Order Transport Approximation to Neutron Transport Problems
,”
Nucl. Sci. Eng.
,
106
, pp.
471
479
.
5.
Spinrad
,
B. I.
, and
Altac¸
,
Z.
,
1990
, “
The SKN Method II: Heterogeneous Problems
,”
Nucl. Sci. Eng.
,
106
, pp.
480
488
.
6.
Altac¸, Z., 1989, “The SKN approximation: A New Method for Solving the Integral Transport Equations,” Ph.D. thesis, Iowa State University, Ames, IA.
7.
Altac¸, Z., and Tekkalmaz, M., 2001, “The SKN approximation for Solving Radiation Transport Problems In Absorbing, Emitting, and Scattering Rectangular Geometries,” Proc. 3rd International Symposium on Radiation Transfer, M. P. Mengu¨c¸ and N. Selc¸uk, eds., Begell House Inc., New York, pp. 119–129.
8.
O¨zis¸ik, M. N., 1973, Radiative Transfer, John Wiley & Sons, Inc.
9.
Buckley
,
H.
,
1928
, “
On the Radiation from the Inside of a Circular Cylinder, Part I
,”
Philos. Mag.
,
6
, pp.
447
457
.
10.
Perlmutter
,
M.
, and
Siegel
,
R.
,
1963
, “
Effect of Specularly Reflecting Gray Surface on Thermal Radiation Through a Tube from its Heated Wall
,”
ASME J. Heat Transfer
,
85C
, pp.
55
62
.
11.
Krook
,
M.
,
1955
, “
On the Solution of Equation of Transfer I
,”
Astrophys. J.
,
122
, pp.
488
497
.
12.
Coppa
,
G.
, and
Ravetto
,
P.
,
1982
, “
An Approximate Method to Study the One-Velocity Neutron Integral Transport Equation
,”
Ann. Nucl. Energy
,
9
, pp.
169
174
.
13.
Coppa
,
G.
,
Ravetto
,
P.
, and
Sumini
,
R.
,
1982
, “
The AN Method and the Spherical-Harmonics Approximation in Neutron Transport Theory
,”
Ann. Nucl. Energy
,
9
, pp.
435
437
.
14.
Abramowitz, M., and Stegun, I. A., 1964, Handbook of Mathematical Functions, Dover Publications Inc.
15.
C¸engel
,
Y.
,
O¨zis¸ik
,
M. N.
, and
Yener
,
Y.
,
1984
, “
Radiative Transfer in a Plane-parallel Medium with Space Dependent Albedo
,”
Int. J. Heat Mass Transf.
,
27
, pp.
1919
1922
.
16.
Clements
,
T. B.
, and
O¨zis¸ik
,
M. N.
,
1983
, “
Effects of Stepwise Variation of Albedo on Reflectivity and Transmissivity of an Isotropically Scattering Slab
,”
Int. J. Heat Mass Transf.
,
26
, pp.
1419
1426
.
17.
Layolka
,
S. K.
, and
Tsai
,
R. W.
,
1975
, “
A Numerical Method for Solving Integral Equations of Neutron Transport-II
,”
Nucl. Sci. Eng.
,
58
, pp.
317
317
.
18.
Dongarra, J. J., Bunch, J. R., Moler, C. B., and Stewart, G. W., 1979, LINPACK Users’ Guide, Society for Industrial and Applied Mathematics, Philadelphia, PA.
19.
Anderson, D. A., Tannehill, J. C., and Pletcher, R. H., 1984, Computational Fluid Mechanics and Heat Transfer, Hemisphere Publishing Corp.
You do not currently have access to this content.