Condensation heat transfer in a bundle of horizontal enhanced surface copper tubes (Gewa C+ tubes) has been experimentally investigated, and a comparison with trapezoidal shaped fin tubes with several fin spacing has been made. These tubes have a specific surface three-dimensional geometry (notched fins) and the fluids used are either pure refrigerant (HFC134a) or binary mixtures of refrigerants (HFC23/HFC134a). For the pure fluid and a Gewa C+ single tube, the results were analyzed with a specifically developed model, taking into account both gravity and surface tension effects. For the bundle and for a pure fluid, the inundation of the lowest tubes has a strong effect on the Gewa C+ tube performances contrary to the finned tubes. For the mixture, the heat transfer coefficient decreases dramatically for the Gewa C+ tube.

1.
Beatty
,
K. O.
, and
Katz
,
D. L.
,
1948
, “
Condensation of Vapors on Outside of Finned Tubes
,”
Chem. Eng. Prog.
,
44
, pp.
55
77
.
2.
Karkhu
,
V. A.
, and
Borovkov
,
V. P.
,
1971
, “
Film Condensation of Vapor at Finely Finned Horizontal Tubes
,”
Heat Transfer-Sov. Res.
,
3
(
2
), pp.
183
191
.
3.
Webb
,
R. L.
,
Rudy
,
T. M.
, and
Kedzierski
,
M. A.
,
1985
, “
Prediction of Condensation Coefficient on Horizontal Integral-Fin Tubes
,”
ASME J. Heat Transfer
,
107
, pp.
369
376
.
4.
Honda
,
H.
, and
Nozu
,
S.
,
1987
, “
A Prediction Method for Heat Transfer During Film Condensation on Horizontal Low Integral-Fin Tubes
,”
ASME J. Heat Transfer
,
109
, pp.
218
225
.
5.
Adamek
,
T.
, and
Webb
,
R. L.
,
1990
, “
Prediction of Film Condensation on Horizontal Integral-Fin Tubes
,”
Int. J. Heat Mass Transf.
,
33
(
8
), pp.
1721
1735
.
6.
Rose
,
J. W.
,
1994
, “
An Approximation Equation for the Vapor-Side Heat-Transfer Coefficient for Condensation on Low-Finned Tubes
,”
Int. J. Heat Mass Transf.
,
37
, pp.
865
875
.
7.
Sreepathi
,
L. K.
,
Bapat
,
S. L.
, and
Sukhatme
,
S. P.
,
1996
, “
Heat Transfer During Film Condensation of R-123 Vapor on Horizontal Integral-Fin Tubes
,”
Journal of Enhanced Heat Transfer
,
3
(
2
), pp.
147
164
.
8.
Gregorig
,
R.
,
1954
, “
Film Condensation on Finely Rippled Surfaces with Consideration of Surface Tension
,”
Z. Angew. Math. Phys.
,
5
, pp.
36
49
.
9.
Adamek
,
T.
,
1981
, “
Bestimmung der Kondensation-grossen auf Feingewellten Oberflachenzur Auslegun Optimaler Wandprofile
,”
Waerme- Stoffuebertrag.
,
15
, pp.
255
270
.
10.
Zhu
,
H.-R.
, and
Honda
,
H.
,
1993
, “
Optimization of Fin Geometry of a Horizontal Low-Finned Condenser Tube
,”
Heat Transfer-Jpn. Res.
,
22
(
4
), pp.
372
386
.
11.
Honda
,
H.
, and
Kim
,
K.
,
1995
, “
Effect of Fin Geometry on the Condensation Heat Transfer Performance of a Bundle of Horizontal Low-Finned Tubes
,”
J. Enhanced Heat Transfer
,
2
(
1–2
), pp.
139
147
.
12.
Honda
,
H.
, and
Makishi
,
O.
,
1995
, “
Effect of Circumferential Rib on Film Condensation on a Horizontal Two-Dimensional Fin Tube
,”
J. Enhanced Heat Transfer
,
2
(
4
), pp.
307
315
.
13.
Webb, R. L. Keswani, S. T., and Rudy, T. M., 1982, “Investigation of Surface Tension and Gravity Effects in Film Condensation,” Proc. Int. Heat Transfer Conf., Washington, 5, pp. 175–180.
14.
Honda
,
H.
,
Uchima
,
B.
,
Nozu
,
S.
,
Nakada
,
H.
, and
Torigoe
,
E.
,
1991
, “
Film Condensation of R-113 on In-Line Bundles of Horizontal Finned Tubes
,”
ASME J. Heat Transfer
,
133
(
2
), pp.
479
486
.
15.
Honda
,
H.
,
Uchima
,
B.
,
Nozu
,
S.
,
Torigoe
,
E.
, and
Imai
,
S.
,
1992
, “
Film Condensation of R-113 on Staggered Bundles of Horizontal Finned Tubes
,”
ASME J. Heat Transfer
,
114
(
2
), pp.
442
449
.
16.
Wang, S. P., Hijikata, K., and Deng, S. J., 1990, “Experimental Study on Condensation Heat Transfer Enhancement by Various Kinds of Integral Finned Tubes,” Condensers and Condensation, Proc. 2nd Int. Symp., pp. xv–xxiii.
17.
Webb
,
R. L.
, and
Murawski
,
C. G.
,
1990
, “
Row Effect for R-11 Condensation on Enhanced Tubes
,”
ASME J. Heat Trasfer
,
112
, pp.
768
775
.
18.
Blanc, P., Bontemps, A., and Marvillet, C., 1994, “Condensation Heat Transfer of HCFC22 and HFC134a Outside a Bundle of Horizontal low Finned Tubes,” Proc. Symp. CFC’s, The Day After, Padova, Italy, pp. 635–642.
19.
Honda, H., Takamatsu, H., Takada, N., and Yamasaki, T., 1995, “Condensation of HFC 134a and HFC 123 in a Staggered Bundle of Horizontal Finned Tubes,” Proc. Eurotherm No. 47, Heat Transfer in Condensation, pp. 110–115, Paris.
20.
Cheng
,
W. Y.
, and
Wang
,
C.
,
1994
, “
Condensation of R-134a on Enhanced Tubes
,”
ASHRAE Trans.
,
10
(
1
), pp.
809
817
.
21.
Agrawal, K. N., Moharty, P., Kumar, R., and Varma, H. K., 1999, “Enhancement of Heat Transfer Rates During Condensation of Refrigerants Over Horizontal Finned Tubes,” Proc. Symp. Two Phase Flow Modelling and Experimentation, 1, pp. 505–510.
22.
Hijikata
,
K.
, and
Himeno
,
N.
,
1990
, “
Condensation of Azeotropic and Nonazeotropic Binary Vapor Mixtures
,”
Annu. Rev. Heat Transfer
,
3
, Chap. 2, pp.
39
83
.
23.
Honda
,
H.
,
Takuma
,
M.
, and
Takada
,
N.
,
1999
, “
Condensation of Downward-Flowing Zeotropic Mixture HFC-123/HFC-134a on a Staggered Bundle of Horizontal Low-Finned Tubes
,”
ASME J. Heat Transfer
,
121
, pp.
405
412
.
24.
Belghazi
,
M.
,
Bontemps
,
A.
,
Signe
,
J. C.
, and
Marvillet
,
C.
,
2001
, “
Condensation Heat Transfer of a Pure Fluid and Binary Mixture outside a Bundle of Smooth Horizontal Tubes. Comparison of Experimental Results and a Classical Model
,”
Int. J. Refrig.
,
24
(
8
), pp.
841
855
.
25.
Gnielinski
,
V.
,
1976
, “
New Equation for Heat and Mass Transfer in Turbulent Pipe and Channel Flow
,”
Int. Chem. Eng.
,
16
(
2
), pp.
359
368
.
26.
Wilson
,
E. E.
,
1915
, “
A Basis for Rational Design of Heat Transfer Apparatus
,”
Trans. ASME
,
37
, pp.
47
70
.
27.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
, pp.
3
17
.
28.
Signe, J. C., 1999, “Condensation de Me´langes Non Aze´otropes de Fluides Frigorige`nes a` l’Exte´rieur d’un Faisceau de Tubes Horizontaux,” Ph.D. thesis, Universite´ Joseph Fourier, Grenoble, France.
29.
Belghazi, M., 2001, “Condensation d’un fluide pur et de me´langes ze´otropes a` l’exte´rieur d’un faisceau de tubes a` surface ame´liore´e,” Ph.D. thesis, Universite´ Joseph Fourier, Grenoble, France.
30.
Rudy
,
T. M.
, and
Webb
,
R. L.
,
1985
, “
An Analytical Model to Predict Condensate Retention on Horizontal Integral-Fin Tubes
,”
ASME J. Heat Transfer
,
107
, pp.
361
368
.
You do not currently have access to this content.